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1
RIEMANN INTEGRAL - I

Unit Structure :

1.1 Introduction

1.2 Partition

1.3 Riemann Criterion

1.4 Properties of Riemann Integral

1.5 Review

1.6 Unit End Exercise

1.1 INTRODUCTION

The Riemann integral dealt with in calculus courses, is well
suited for computations but less suited for dealing with limit
processes.

Bernhard Riemann in 1868 introduced Riemann integral. He
need to prove some new result about Fourier and trigonometric
series. Riemann integral is based on idea of dividing. The domain of
function into small units over each such unit or sub-interval we erect
an approximation rectangle. The sum of the area of these rectangles
approximates the area under the curve.

As the partition of the interval becomes thinner, the number
of sub-interval becomes greater. The approximating rectangles
become narrower and more precise. Hence area under the curve is
more accurate. As limits of sub-interval tends to zero, the values of
the sum of the areas of the rectangles tends to the value of an
integral. Hence the area under curve to be equal to the value of the
integral.

Before going for exact definition of Riemann explained the
following definitions.

1.2 PARTITION

A closed rectangle in n is a subset A of n of the forms.

     1 1 2 2, , .... ,n nA a b a b a b    where i ia b  . Note that

 1 2, ,...., nx x x A iff i i ia x b i   .
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The points 1 2, ,...., nx x x are called the partition points.

The closed interval      1 0 1 2 1 2 1, , , ,......, ,n n nI x x I x x I x x   are

called the component internal of  ,a b .

Norm : The norm of a portion P is the length of the largest sub-
internal of P and is denoted by P .

For example : Suppose that 1 0 1, ,.... kP t t t is a partition of  1 1,a b and

2 0 ,...., rP S S is a partition of  2 2,a b . Then the partition  1 2.P P P of

   1 1 2 2, ,a b a b divides the closed rectangle    1 1 2 2, ,a b a b into Kr-

gub rectangles.

In general if iP divides  ,i ia b into ik sub-interval then

 1,.... nP P P    1 1, .... ,n na b a b  into 1 2..... nK k k k sub-rectangle.

These sub-rectangles are called sub-rectangles of the partition p.

Refinement :
Definition : Let A be a rectangle in n and :f A  be a bounded

function and P be partition of A for each sub-rectangles of the
partition.

    
 1

inf :

. . . ,s s

ms f f x x S

g l b of f on x x

 

    

    
 1

sup :

. . . ,s s

Ms f f x x S

l u b of f on x x

 

    

where 1, 2,....,S n

The lower and upper sums of f for ‘p’ are defined by

     , s
s

L f p m f s and      , s
s

U f p M f s

Since s sm M we have    , ,L f p U f p

Refinement of a partition : Let  1 2, ,..., nP P P P and  * * *
1 ,..., nP P P

be partition of a rectangle A in n . We say that a partition *P is a
refinement of P if *P P .
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If
1P and 2P are two partition of A then 1 2P P P  is also a

partition of A is called the common refinement of 1P and 2P .

A function :f A  is called integrable on the rectangle A

in n if ' 'f is bounded . .g l b of the set of all upper sum of ' 'f and

. .l u b of the set of all lower sum of ' 'f exist.

Let     inf ,U f U f p

    sup ,L f L f p

If    U f L f is called ' 'f is R-integrable over A.

if can be written as    
A

U f L f f   .

Theorem :
Let P and P be partitions of a rectangle A in n . If P

refines P then show that    , ,L f p L f P and    , ,U f P U f p  .

Proof :
Let a function :f A is bounded on A P & *P are two

partition of A and P is retinement to P.

Any subrectangle S of P is union of some subrectangles

1 2, ,...., ks s s of P and        1 2 ..... kV S V s V s V s    .

Now        inf ; inf ;s im f f x x s f x x s   

    1,....,
is sm f m f i k   

     , s
s p

L f p m f V s




          1 ....s s km f V s m f V s V s   

       
1 1 .....

ks s km f V s m f V s  

The sum of LHS for all subrectangle is of P will get

 ,L f P .

   1, ,L f p L f p 

Now,     sup ;sM f f x x S 

  sup ; if x x S 

    1,...,s si
M f M f i K  



4

     , s
s p

U f p m f V s




Now,             1 2 ....i kMs f V S Ms f V S V S V S   

           1 2..... ....s s kMs f V s M f V s M f V s    

Taking the of L.H.S. for all subrectangle iS of P will get

     , , ,U f P U f P U f P   .

Theorem :
Let

1P & 2P be partitions of rectangle A & :f A be

bounded function. Show that    2 1, ,L f P U f P &

   1 2, ,L f P f P  .

Proof :
Let a function :f A  be a bounded find

1P & 2P are any

two partition of A.

Let 1 2P P P 

P is a refinement of both
1P & 2P

   1, ,U f P U f P ……….. (I)

   2, ,U f P U f P ……….. (II)

   1, ,L f P L f P ……….. (III)

   2, ,L f P L f P ……….. (IV)

 We get        1 2, , , ,U f P U f P L f P L f P   .

Hence    1 2, ,U f P L f P

Similarly,        2 2 1, , , ,U f P U f P L f P L f P   .

Hence,    2 1, ,U f P L f P

Theorem :
Let a function :f A  be bounded on A then for any

0, a partition P on A such that    ,U f P U f  and

   ,L f P L f 
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Proof :
Let a function :f A  be bounded on A

    inf ,U f U f P and     sup ,L f L f P for any 0, 

partitions
1P & 2P of A such that    1,U f P U f  &

   2,L f P L f  .

Let 1 2P P P  the common refinement of
1P and 2P .

     

     
1

2

, ,

, ,

U f P U f P U f

L f P L f P L f

  

  

    ,U f P U f 

   ,L f P L f 

1.3 RIEMANN CRITERION

Let A be a rectangle in n A bounded function :f A  is

integrable iff for every 0 , there is a partition P of A such that

   , ,U f P L f P .

Proof :
Let a function :f A  is bounded.

    inf ,U f U f P

    sup ,L f L f P

Let f be integrable of A

   U f L f 

for any 0,  a partition P on A such that    , 2U f p U f 

and    , 2L f p L f  .

   , 2U f p U f   &    , 2L f p L f    .

       , , 2 2U f p L f P U f L f      .

   ,U f p L f  

Conversely,
Let for any 0,  a partition P on A such that

   , ,U f p L f P .

           , ,U P f U f U f L f L f L f P               
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Since    , ,U f P U f o 

   U f L f o 

and    ,L f L f P o 

we have,    o U f L f  

Since  is arbitrary,    U f L f

f is integrable over A.

Example 1
Let A be a rectangle in n and :f A  be a constant

function. Show that f is integrable and  .
A

f C V A for some C .

Solution :

 f x C x A  

f is bounded on A

Let P be a partition of A

    
    

inf ;

sup ;

s

s

m f f x x s C

M f f x x s C

  

  

         , s
S S

L f P m f V S C V S CV A    

         , s
S S

U f P M f V S C V S CV A   

     U f L f C V A   

f is integrable over A.

 by Reimann criterion, 0 s.t.

 .
A

f C V A for some C .

Example 2 :
Let    : 0,1 0,1F X  

 ,
1

o if x is rational
f x y

if x is irrational

   
 

   

Show that ‘f’ is not integrable.

Solution :
Let P be a partition of    0,1 0,1 into S subport of P.
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Take any point  1 1,x y S  such that x is rational.

 ,f x y o  and  1 1,x y S  such that 1x , is irrational

 1 1, 1f x y 

    
    

inf ; 0

sup ; 1

s

s

m f f x x S

M f f x x S

   

   

     

     

   

   

, 0

, 1

1, 0

s
S

s
S

L f P m f V S

U f P M f V S

U f L f

U f L f

 

  

  

 





f is not integrable    0,1 0,1

1.4 PROPERTIES OF RIEMANN INTEGRAL

1) Let :f A  be integrable and g f except at finitely many

points show that g is integrable and
A A

f g  .

Proof :
Since f is integrable over A.

 by Riemann Criterion,  a partition P of A.
Such that    , ,U f P L f P  ……… (I)

Let P be a refinement of P, such that
1) x A  with    f x g x , it belongs to 2n subrectangles of P

2)  
 12n

V S
d u




 

Where d = numbers of points in A at which f g

     

     

sup inf

inf sup

x Ax A

x A x A

u g x f x

g x f x



 

 

 

 P is refines P, we have

       

       

, , , ,

, , , ,

L f P L f P U f P U f P

U f P L f P U f P L f P
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Now

   , ,U g P U f P 

       
1

d

ij ij ij
i

Ms g Ms f V s


  

On other rectangle, f g and so    ij ijMs g Ms f .

     supij
x A

Ms g g x


 &          inf infij ij
x A x A

Ms f f x Ms f f x
 

  

   ij ijMs g Ms f u 

     
2

1 1

, ,

nd

ij
i j

U g P U f P u V S
 

 
     

 
 

Let       
2

1 1

1 1

sup , , 2 .

nd
n

ij
i j

V V S U g P U f P uV d u v
 

     …….

(II)

Now similarly we get    1 1, , 2nL g P L f P d V   ……... (III)

by (II) & (III) we get.

       

 

 
 

1 1 1 1

1

, , , 2 , 2

2
2

2

2 2 2 2

n n

n

n

n

U g P L g P U f P d u L f P d

d u V

d u

d u

 



    


  

   
   











   1 1, ,U g P L g P  

By Reimann Criterion G is integrable by equation (II)

   

   

1 1

1 1

, , 2

, , 2

n

n

U g P U f P d uv

U g P U f P d u

 

   

Note that    1 1, , 2n

A

g U g P U f P d u  

 1, 2
2

nL f P d u


  

 
 

1

1

2
,

2 2

n

n

d u
L f P

d u
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1

1

,
2 2

,

A

L f P

L f P

f

   

 

 

This is true for any 0

A A

g f  ………………….. (IV)

Now    , ,
2

A

g L g P L f P    

 ,

2
A A

U f P

f f



   

  inf ,

2

A

A A

f U f P

g f

 

  



 

This is true for any 0

A A

g f   ……… (V)

from (IV) & (V) we get

A A

g f 

2) Let :f A  be integrable, for any partition P of A and sub-

rectangle S, show that

i)      s s sm f m g m f g   and

ii)      s s sM f M g M f g  

Deduce that

     , , ,L f P L g P L f g P   and

     , , ,U f g P U f P U g P  

Solution :
Let P be a partition of A and S be a Subrectangle

    
   

inf ;s

s

m f f x x S

m f f x x S
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Similarly    sm g g x x S  

       s sm f m g f x g x x S     

   s sm f m g  is lower bound of

         ; ;f x g x x S f g x x S    

   s sm f m g  is lower bound of

         ; ;f x g x x S f g x x S    

       
 

inf ;s s

s

m f m g f g x x S

m f g

    

 

     s s sm f m g m f g   

ii)     ;Ms f sub f x x s 

   Ms f f x x s   

Similarly    Ms g g x x S  

       Ms f Ms g f x g x x S     

   Ms f Ms g  is upper bound of

         ; ;f x g x x S f g x x S    

    supMs f Ms g        ;f g x x S Ms f g   

     Ms f Ms g Ms f g   

Hence,

          

    

 

, ,

,

s p

s p

L f P L g P Ms f Ms g V S

Ms f g V S

L f g P





  

 

 





     

          

    

 

, , ,

, ,

,

s

s

L f P L g P L f g P

U f P U g P Ms f Ms g V S

Ms f g V S

U f g P

   

  

 

 





     , , ,U f P U g P U f g P   Proved.
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3) Let :f A  be integrable, & :g A integrable than show

that f g is integrable and  
A A A

f g f g     .

Proof :
Let P be any partition of A then

           , , , , , ,U f g P L f g P U f P U g P L f P L g P        

       , , , ,U f P U g P L f P L g P    …………………….. (I)

f is integrable.

By Rieman interion for given 0,  a partition P, of A such

that    1 1, ,
2

U f P L f P   ……………………………….… (II)

Similarly g is integrable for 0,  a partition 2P of A such that

   2 2, ,
2

U g P L f P   ……………………………………… (III)

Then *
1 2P P P  is a refinement of both 1 2&P P .

   *
1, , ;L f P L f P     *

1, ,U f P U f P &    *
2, , ;L g P L f P

   *
2, ,U g P U g P ………………………………………….. (IV)

       * *
1 12 , , , ,U f P L f P U f P L f P    

       * *
2 22 , , , ,U g P L g P U g P L g P     ……………….. (V)

The equation I is true for any partition P of A.

In general, it is true for partition *P of A

   
       

* *

* * * *

, ,

, , , ,

2 2

U f g P L f g P

U f P L f P U g P L g P

   

   

  

   * *, ,U f g P L f g P    

By Riemann Criterian f g is integrable.

Let 0 since  sup ,
A

f f P so a partition P such that

 1,
2

A

f f P   .
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Similarly a partition 2 3, ,.... nP P P of A S

 

 

 

2

3

4

,
2

,
2

,
2

A

A

A

g L g P

U f P f

U g P g

 

  

  







Let 1 2 3 4P P P P P    .

Then    1, ,
2 2

A

f f P L f P    

Similarly  ,
2

A

g L g P  

 ,
2

A

U f P f   and  ,
2

A

U g P g  

     , , ,
A A A

f g L f P L g P L f g P f g        

 

   

,

, ,

2 2
A A

A A

U f g P

U f P U g P

f g

f g

 

 

    

  

 

 

A A A A A

f g f g f g          

This is true for any 0

A A A A A A A A

f g f g f g f g f g                

4) Let :f A  be integrable for any constant C, show that

 
A A

Cf C f  .

Proof :
Let C

Case 1
Let 0 and suppose 0C  .
Let P be a partition of A and S be a subrectangle of P.
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sup ;

sup ;

sup ;

sM Cf Cf x x S

Cf x x S

C f x x S

CMs f

 

 

 



Similarly,

   sms Cf Cm f

         

 

,

,

S S

U Cf P Ms Cf v S C Ms f v S

C U f P

  

 

 

Similarly    , ,L Cf P C L f P 

f is integrable for above 0,  a partition P of A such that

   , ,U f P L f P C 

       

   

, , , ,

, ,

U Cf P L Cf P C U f P C L f P

C U f P L f P

C C
C

     

   

  

By Riemann Criteria.

 Cf is integrable

for 0, a  partition P of A such that

   

 

 

, ,

,

,

A A

A

A

A A A A

C f C f C L f P L Cf P
C

Cf U Cf P

C U f P C f
C

f Cf C f C f
C C

      
 

 

     
 

             
   

 





   

This is true for any 0

 
A A A

A A

C f Cf C f

Cf C f

 

 

  

 

Case II
Now suppose 0C 

Let P be a partition of A and S be any subrectangle in P.

   Ms Cf C Ms f   and
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   sm Cf C Ms f 

   , ,L Cf P C U f P   and

   , ,U Cf P C L f P 

f is integrable for above 0, a partition P of A such that

     
, ,U f P L f P

C
 



       

   

, , , ,

, ,

U Cf P L Cf P C L f P C U f P

C U f P L f P

C
C

     

    

 




By Riemann Criteria  Cf is integrable.

for 0,  a partition P of A such that
A A A

C f Cf C f     .

This is true for every 0

A A A

A A

C f Cf C f

Cf C f

  

 

  

 

Example 3:
Let , :f g A R be integrable & suppose f g show that

A A

f g  .

Solution :

By definition   inf ,
A

f U f P and   inf ,
A

g U g P .

Let P be any partition of A & S be any subrectangle in P
as f g

   

   

     

, ,

inf , inf ,

s sm f m g

U f P U g P

U f P U g P



 



This is true for any partition

A A

f g  
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Example 4:
If :f A  is integrable show that if is integrable and

A A

f f  .

Solution :
Suppose f is integrable first we have to show that f is integrable.

Let P be a partition of A & S be subrectangle of P then

    
  

  

 

sup ;

sup ;

sup ;

Ms f f x x S

f x x S

f x x S

Ms f

 

 

 



Similarly

   Ms f Ms f

         

     

             

   

,

,

, ,

s s
S S

s
S

s s s s
P P

U f P M f V S M f V S

L f P m f V S

M f m f V S M f m f V S

U f P L f P

  

 

     

 

 



 

f is integrable, for 0,  a partition P such that

   , ,U f P L f P .

       , , , ,U f P L f P U f P L f P    

By Riemann criteria
f is integrable over  .

Now   inf ,
P

A

F U f P

   

   

 

inf

inf

inf

s
P

S P

s
P

s
P

P

M f V S

M f V S

M f V S
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inf

inf ,

s
P

M f V S

U f P







A A

f f  

Example 5:
Let :f A  and P be a partition of A show that f is

integrable iff for each sub-rectangle S the function f
s

which consist

of f restricted to S is integrable and that in this case
SA S

ff
s

  .

Suppose :f A is integrable.

Let P be a partition of A & S be a sub-rectangle in P.

Now to show that ;f S
s

 is integrable.

Let 0,  a partition P of A such that    , ,U f P L f P  ( f

is integrable)
Let P P P   then 1P is refinement of both P & P .

   1, ,U f P U f P  &    1, ,L f P L f P 

       1 1, , , ,U f P L f P U f P L f P     ………………… (I)

1P is refinement of P

S is union of some subrectangle of 1P say
1i

S U si


 .

          
1

1 1, , s s
S P

U f P L f P M f m f V S


     for all rectangle.

      

   
1

, ,

i

k

i s
i

Ms f m f V S

f fU P L P
S S



  

 



By Riemann Criterion
f

S
 is integrable.

Conversely, Suppose f
S

is integrable for each S P .

To show that f is integrable.
Let 0,  partition SP of S such that
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   , ,S S

f fU P L P k
s s

  ………………………………. (II)

f
S

 is integrable for each S P where K is number of rectangle in

P.

Let 1P be the partition of A obtained by taking all the
subrectangle defined in the partition SP .

There is a refinement 1
SP of SP containing subrectangles in

1P .

   1 1, ,S SU f s P L f s P k   …………………………… (III)

          1 1

1 1

1 1 1, ,
S S

S P

U f P L f P M f m f V S


    

      

    

1

1 1

1 1

1 1, ,

,

S

s
S P S P

S S
S P

S P

Ms f m f V S

U f s P L f s P

k

k k

 





 
    

 

 

 

  

 





By Riemann Criterian f is integrable.

Let 0

 

   
1 1

1

,

S

S
S P S PS

s
S P S P

f S k L f S P

m f V S

 

 

 
  

 

 
   

 

 

 

Let 1P be a partition of A, obtained by taking allthe subrectangle
defined in SP .
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1

1 1

1

1 1

1

1 1

1

1 1

1

1

, ,

s
S P S PS

A

s
S P

s
S P S P

f S k m f V S

L f P f U f P

M f V S

M f V S

 



 

 
    

 

  

 

 
  

 

 





 

  , S
S P S P S

S P S PA

CU f S P f S
k

f S C f f S

 

 

 
   

 

   

  

   

This is true for all 0

S P S P S

S PA S

f S f f S

f f S

 



  

 

   

 

Example 6:
Let :f A be a continues function show that f is

integrable on A.
Solution :

Let :f A  be a continuous function to show that f is

integrable.

Let 0 , since A is closed rectangle it is closed and bounded
in n .

A is compact.

f is continuous function on compact set f is uniformly

continuously on  .
for the above 0, 0   such that , ,x g A 

     x y f x f y V A     .

Let P be a partition of A such that side length of each

subrectangle is less than n .

If ,x y S for some subrectangles S then

   
2 2

1 1 .... n nx y x y x y     
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2

Sn
n

   
 

     f x f y V A 

S is compact
f is continuous

f attains its bound in S.

Let 1 2, ,....., kS S S be the subrectangle in A. Then for

1 , ,i i ii k x y S    such that        i i si iMs f f x m f f y  .

          
1

, ,
i

k

i s i
i

U f P L f P Ms f m f V S


    

      

 
 

   
 

 
 

1

1

k

i i i
i

k k

i i
i V A

f x f y V S

V S V S
V A V A

V A
V A





 

 
 


 



 

By Riemann Criterion f is integrable.

1.5 REVIEW

After reading this chapter you would be knowing.
 Defining R-integral over a rectangle in n
 Properties of R-integrals
 R-integrabal functions
 Continuity of functions using  -intervals.

1.6 UNIT END EXERCISE

I) Let    ; 0,1 0,1f   be defined by

  1, 0 0
3

13 1
3

f x y if y

if y

    

    

show that f is integrable.

II) Let Q be rectangle in n & ;f Q  be any bounded

function.
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a) Show that for any partition P of Q    , ,L f P U f P

b) Show that upper integral of function f exit.

III) Let f be a continuous non-negative function on  0,1 and

suppose there exist  0 ,x a b such that  0 0f x  show that

 
0

f x dx a  .

IV) Let f be integrable on  ,a b and  : ,F a b  and

   1F x f x then prove that      
a

f x dx F b F a  

V) Which of the following functions are Riemann integrable
over  0,1 . Justify your answer.

a) The characteristic function of the set of rational number in

 0,1 .

b)   sinf x x xy for 0 1x 

 0 3f 

VI) Prove that if f is  -integrable then f is also R-integrable is

the converse true? Justify your answer.

VII) Show that a monotone function defined on an interval  ,a b is

R-inegrable.

VIII) A function  ; 0,1f   is defined as   1 1

1 1 1

3 3 3n n n
f x x

 
   

where n

 0 0f 

show that f is R-integrable on  0,1 & calculate  
1

0

f x dx  .

IX)  f x x x     1,3x  where x   denotes the greatest integer

not greater than x show that f is R-integrable on  1,3 .

X) A function  ; ,f a b   is continuous on  ,a b   0f x 

 ,x a b  and   0
b

a

f x dx  show that   0f x   ,x a b  .
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2
MEASURE ZERO SET

Unit Structure :

2.1 Introduction

2.2 Measure zero set

2.3 Definition

2.4 Lebesgue Theorem (only statement)

2.5 Characteristic function

2.6 FUBIN’s Theorem

2.7 Reviews

2.8 Unit End Exercises

2.1 INTRODUCTION

As we have seen, we cannot tell if a function is Riemann
integrable or not merely by counting its discontinuities one possible
alternative is to look at how much space the discontinuities take up.
Our question then becomes : (i) How can one tell rigorously, how
much space a set takes up. Is there a useful definition that will
concide with our intuitive understanding of volume or area?

At the same time we will develop a general measure theory
which serves as the basis of contemporary analysis.

In this introductory chapter we set for the some basic
concepts of measure theory.

2.2 MEASURE ZERO SET

Definition :
A subset ‘A’ of n said to have measure ‘O’ if for every

0 there is a cover  1 2, ....U U of A by closed rectangles such that

the total volume  
1i

v Ui




 .

Theorem :
A function ‘f’ is Riemann integrable iff ‘f’ is discontinuous

on a set of Measure zero.
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A function is said to have a property of Continuous almost
everywhere if the set on which the property does not hold has
measure zero. Thus, the statement of the theorem is that ‘f’ is
Riemann integrable if and only if it is continuous atmost
everywhere.

Recall positive measure : A measure function  : 0,u M   such

that  
11

i i
ii

V u V u
 



 
 

 
 .

Example 1:
1) “Counting Measure” : Let X be any set and  M P X the set of

all subsets : If E X is finite, then    E E  if E X is

infinite, then  E  

2) “Unit mass to 0x - Dirac delta function” : Let X be any set and

 M P X choose 0x X set.

  0

0

1

0

E if x E

if x E

    

   

Example 2:
Show that A has measure zero if and only if there is countable

collection of open rectangle 1 2, ,....V V such that iA V  and

 iV v  .

Solution :
Suppose A has measure zero.
For 0,  countable collection of closed rectangle 1 2, ,....V V

such that
1

i
i

A V




 and  
1 2

i
i

V V





 .

For each i , choose a rectangle iu such that i iu v and

   2i iV u V v .

Then
1 1

i i
i i

A v u
 

 

   and      
1 1 1

2i i i
i i i

V u V u V v
  

  

   

 
1

2 2
2

i
i

v u





  

Note that : iu are open rectangles in n conversely,
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Suppose for 0,  countable collection of open rectangles

1 2, ,....u u such that
1

i
i

A u




 and  
1

i
i

V u




 .

For each ,i consider i iV u then iV is a closed rectangle and

   i iV v V u .

Then
1 1

i i
i i

A u v
 

 

   and    
1 1

i i
i i

V v V u
 

 

   .

A has measure zero.

Note : Therefore we can replace closed rectangle with open
rectangles in definition of measure zero sets.
Example 3:

Show that a set with finitely many points has measure zero.

Solution :
Let  1,...., mA a a be finite subset of n .

Let  1 20, , ,.....,i i i ina a a a  and
1 1

1 11 1

1 1
, ...

2 2 2 2

n n

i ii i
Vi a a

 

     
       

     
1 1

1 1

1 1
... ,

2 2 2 2

n n

in ini i
a a

 

     
      

     

Then  

1

1 1
1 2 2

n n

i i
i

V Vi
 



  
  

 


Clearly ia Vi for 1 i m 

1

m

i

A Vi


  and   1 1
1 1 1

1 1

2 2 2

m m

i i
i i i

V Vi


 
  


     

By definition of measure of zero
 A has measure of zero.

Example 4:
If 1 2 3 ....A A A A    and each Ai has measure zero, then

show that A has measure zero.

Solution :
Let 0 and 1 2 ....A A A   with each Ai has measure zero.
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 Each Ai has measure zero for 1, 2,....i   a cover

 1 2, ,....,i i inu U U of Ai

By closed rectangle such that  
1

, 1,2,....
2

ii i
i

V u i





  

Then the collection of iiU is cover A

 
1 1 2

i i
i i

V V
 

 


   

Thus 1 2 ....nA A A A   has measure zero.

Example 5:
Let nA  be a Rectangle show that A does not have

measure zero. But A has measure zero.

Proof :
Suppose A has measure zero.

 A is a rectangle in n

  0V A 

Choose 0 such that  V A …………………….. (I)

A has measure zero

 countable collection of open rectangle  iu such that
1

i
i

A u






and  iV u  .

 A is compact

This open cover has a finite subcover after renaming. We may
assume that  1 2, ,.... ku u u is subcover of the cover  iu .

1
i

i

A u




  .

Let P be partition of A that contains all the vertices all ' 1iu s i  to

k. Let 1 2, ,...., nS S S denote the subrectangle of partitions.

       
1 1 1

n k

j i i
j i i

V A V S V u V u
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which is a contradiction to (I)

 A does not have measure zero.

Note that A is a finite union of set of the form

     1 1, , ..... , ,i i n nB a b a b a b     . B can be covered by are closed

rectangle.      1 1, ..... , ..... ,i i n nB a b a a a b      .

Then  V B depend on  and   0V B  as 0  .

B has measure zero

Boundary of A  A is finite union of measure zero.

A has measur5e zero.

Example 6:
Let nA  with A   . Show that A does not measure zero.

Solution :
Let nA  , with A  

Let x A 

 0r  , such that  , ,B x r A But

   

1

, ;

;
n

i i
i

B x r y A y x r

y A y x r


   

 
    

 


A does not have measure zero.

Example 7:
Show that the closed interval  ,a b does not have measure

zero.

Solution :
Suppose  

1i i
u


be a cover of  ,a b by open intervals.

 ,a b is compact this open cover has a finite subcover.

After renaming, we may assume  1 2, ,...., nu u u is the subcover of  iu

of  ,a b .
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We may assume each iu intersect  ,a b (otherwise replace iu with

 ,iu a b )

Let
1

n

i
i

u u




If u is not connected then  ,a b is contained in one of connected

component of u.

 , ia b u  for some i

 , ja b u  for i j

Which is not possible
u is connected
u is an open interval say  ,u c d Then as    , ,a b u c d 

 iV u d c b a    

In particular we cannot find an open cover of  ,a b with total length

of the cover
2

b a
 .

 ,a b does not have measure zero.

Example 8:
If  0,1A is the union of all open intervals  ,i ia b such that

each rational number in (0,1) is contained in some  ,i ia b . If

 
1

1
i

T bi ai




   then show that the boundary of A does not have

measure zero.

Solution :
We first show that  0,1 \A A 

Note that \A A A  

A is open A A  

Also  0,1Q A

 0,1Q A 

 0,1 A 

But    0,1 0,1A A  

 

 

0,1

0,1 \

A

A A
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Let 1 0T  

If A has measure zero then since 0,  a cover of A with open

intervals such that sum of length of intervals 1 T 

A is closed and bounded
A is compact

 finite subcover  
1

n

i i
u


for A

  1iu T  

Note that   1;1 ; ,i i i i
u i n a b




   cover  0,1 and sum of lengths

of these open intervals is less than 1 1T T   which is not possible

as     10,1 ; 1 ; ,i i i i
u i n a b A




      does not have measure zero.

2.3 DEFINITION

A subset ‘A’ of n has content ‘O’ if for every 0 , there is
a finite cover  1 2, ,....., nu u u of A by closed rectangles such that

 
1

n

i
i

V u




Remark :
1) If A has content O, then A clearly has measure O.
2) Open rectangles can be used instead of closed rectangles in the

definition.

Example 9:
If A is compact and has measure zero then show that A has

content zero.

Solution :
Let A be a compact set in n
Suppose that A has measure zero

 a cover  1 2, ,....u u of A such that  
1

i
i

V u




 for every 0 .

A is compact, a finite number 1 2, ,....., nu u u of iu also covers A and

   
1 1

n

i i
i i

V u V u


 

  

A has content zero.



28

Example 10 :
Give one example that a set A has measure zero but A does

not have content zero.

Solution :
Let  0,1A Q 

Then A is countable
A has measure zero

Now to show that A does not have content zero.

Let   , ;1i ia b i n  be cover of A

   , .... ,i i n nA a b a b   

   1 1, .... ,n nA a b a b   

But  0,1A 

  
1

, 1
n

i i
i

a b


 

In particular, we cannot find a finite cover for A such that

 
1

1,
2

n

i i
i

a b




A does not have content zero.

Example 11:
Show that an unbounded set cannot have content zero.

Solution :
Let nA  be an unbounded set.

To show that A does not have content zero
Suppose A has content zero for 0,  finite cover of closed

rectangles  
1

k

i i
u


of A such that

1

k

i
i

A u


 and  
1

k

i
i

V u


 .

Let    1 1, .... ,i i i in inu a b a b  

Let  1 2min , ,.....i i i kia a a a

 1 2max , ,.....i i i kib b b b

then    1 1, .... ,i n nu a b a b  

   1 1, .... ,n nA a b a b   

A is bounded
Which is contradiction

A does not have content zero.
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Example 12:

:f A  is non-negative and 0
A

f  where A is rectangle,

then show that   ; 0x A f x  has measure zero.

Solution :

For   1, ;nn A x A f x
n

   

Note that      , 0 ; 0x A f x x A F x    

 f is non-negative}

  
1 1

1; n
n n

x A f x A
n

 

 

    

We have to show that nA has measure zero

0
A

f  and   inf , 0
P

A

f U f P  for 0,  a partition P such that

 ,U f P n

Let S be a subrectangle in P

if   1
n sS A M f

n
  

clearly  ; nS P S A   covers nA and

       

 

 

1 1

,

s s
S P S P

n

V S M f V S M f
n n

f P n

V S

S A

s p

 

 
   

 

 

 

  

 

 









By definition nA has content zero

nA has measure zero

  , 0x A f x   is countable union of measure zero set.

  ; 0x A f x   has measure zero.

* Oscillation  ,o f a of ‘f’ at a

 for 0  , Let     , , sup ; &M a f f x x A x a      

    , , inf ; &m a f f x x A x a      

The oscillation  ,o f a of f at a defined by

      , lim , , , ,
o

o f a M a f m a f
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This limit always exist since    , , , ,M a f m a f  decreases as 

decreases.

Theorem :
Let A be a closed rectangle and let :f A  be a bounded

function such that  ,O f x  for all x A show that there is a

partition P of A with      , ,U f P L f P V A  .

Proof :
Let       , lim , , , ,

O
x A U f x M x f m x f


 


    

 a closed rectangle xu containing x in its interior such that

u ux x
M M  by definition of oscillation.

 ;xu x A  is a cover of A

A is compact

This cover has a finite subcover say  1 2, ,....,x x xku u u

1

k

i
xi

A u


  .

Let P be a partition for A such that there each subrectangle ‘S’ of P
is contained in some xi

u then    s sM f m f  for each

subrectangle ‘S’ in f

          

 

 

, , s s
S P

S P

U f P L f P M f m f V S

V S

V A





    









2.4 LEBESGUE THEOREM (ONLY STATEMENT)

Let A be a closed rectangle and :f A  is bounded

function. Let B x ; f is not continuous at x}. Then f is integrable

iff B is a set of measure zero

2.5 CHARACTERISTIC FUNCTION

Let nC   . The characteristics function c of C is defined by

  1c x if x C    

0 if x C   
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If C A where A is a closed rectangle and :f A is bounded

then
C

f is defined as c

C

f  provided cf  is integrable [i.e. if f

and c are integrable]

Theorem :
Let A be a closed rectangle and C A . Show that the

function :c A   is integrable if and only if C has measure zero.

Proof :
To show that :C A  is integrable iff C has measure

zero.

By Lebesgue theorem, it is enough to show that  : cC x A    is

discontinuous}

Let a C   an open rectangle ‘u’ containing a such that u C

  1c n n U   

c is continuous at a.

Let  a Ext c  Exterior of C

[By definition union of all open sets disjoints from C]
Ext (C) is an open set

 an open rectangle u containing such that  U Ext c

  0c n n u   

c is continuous at a

If a c then c is continous at a ……………………. (I)

Let a c  for any open rectangle U with a in its interior contains
a point y C  & a point nz c

   1& 0c cy z   

c is not continuous at a

 : cc x A    is discontinuous at x }

By Lebesgue Theorem.

c is interrable if and only if c has measure zero.

Theorem :
Let A be a closed rectangle and C A
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If C is bounded set of measure zero and c

A

 exist then show that

0c

A

  .

Proof :
C A be a bounded set with measure zero.

Suppose c

A

 exist c is integral

To show that 0c

A

 

Let P be a partition of A and S be a subrectangle in P.

S does not have measure zero

S C

x S  but x C

 

 

0

0

c

s c

x

m





 

 

This is true for any subrectangle S in P

     , 0c s cL P m V C   
This is true for any partition P

 sup , ;c c

A

L P P   is partition of}

c

A

O 

2.6 FUBINI’S THEOREM

Fubini’s Theorem reduces the computation of integrals over
closed rectangles in , 1n n  to the computation of integrals over

closed intervals in  . Fubini’s Theorem is critically important as it
gives us a method to evaluate double integrals over rectangles
without having to use the definition of a double integral directly.

If :f A R is a bounded function on a closed rectangle then

the least upper bound of all lower sum and the greatest lower bound
of all upper sums exist. They are called the lower integral and upper

integral of f and is denoted by
A

L F and
A

U F respectively.
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Fubini’s Theorem
Statement : Let nA  and nB   be closed rectangles and let

:f A B  be integrable for x A , Let :xg B  be defined by

   ,xg y F x y and let

   

   

,

,

x

B B

x

B B

x L g L f x y dy

u x U g U f x y dy

  

  

 

 



Then  and  are integable on A and  
A B A A B

f L L f x dy dx


 
   

 
   

   ,
A B A A B

f u x dx U f x y dy dx


 
    

 
   

Proof :
Let AP be a partition of A and BP be a partition of B. Then

 ,A BP P P is a partition of A B

Let AS be a subrectangle in AP and BS be a subrectangle in BP

Then by definition,

A BS S S  is a subrectangle in P

     

   

1

A B

B B

s
S P

s s A B
S P

L f P m f V S

m f V S S








 





     
A B

A A B B

s s B A
S P S P

m f V S V S
 

 
  

 
  …………………. (I)

For    ,
A B BA s s s xx S m f M g 

For ,Ax S

       
A B B

B B

s s A B s x B
S P

m V S V S m g V S


   

   ,x B x

B

L g P L g L x  

This is true for any x A

       

    

,
A B

A A B B

A

A A

s s B A
S P S P

s A
S P

L f P m f V S V S

m L x V S


 



 
   

 



 



  , AL x P  ……………………………………… (II)
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From (I) & (II)

    , , AL f P L x P ………………………………………… (III)

Now      , S
S P

U f P M f V s




   
A B

A A

B B

S S A B
S P
S P

M f V S S



  

     
A B

A A B B

S S B A
S P S P

M f V S V S 
 

      
  …………….. (IV)

For    ,
A B BA S S S xx S M f M g 

For Ax S ,

       

   ,

A B B

B B B B

S S B S x B
S P S P

x B x

B

M f V S M g V S

u g P u g x

 

 


 



  

 



This is true for any x A .

     
A B

A A B B

S S B A
S P S P

M f V S V S 
 

     
 

    
A

A A

S A
S P

M u x V S


 

  , Au x P ……………………………………….. (V)

from (IV) & (V)

    , , AU f P U u x P ……………………………. (VI)

 By (III) & (VI)

       , , ,A AL f P L x P u L x P 

    , ,Au x P U f P  ………………………… (VII)

Also

          , , , ,A A AL f P L x P L x P u x P    …………. (VIII)

f is integrable

     

       

sup , inf ,

sup , inf ,
B

A

PP
A B

A A
PP

A B

L f P U f P f

L x P u x P f





 

  



 

 x  is integrable
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   ,
A B A A B

f x L f x y dx


      
     ………………………. (IX)

Also by (VIII) & (IX)

       sup , inf ,
A

A

A A
PP

A B

L L x P U u x P f


  

 u x is integrable.

   ,
A B A A B

f u x dx U f x y dx 


       
   

Hence Proved

Remark :
The Fubini’s theorem is a result which gives conditions under

which it is possible to compute a double integral using interated
integrals, As a consequence if allows the under integration to be
changed in iterated integrals.

 

 

,

,

A B B B

B A

f L f x y dx dy

U f x y dx dy

 

  



     

     

  

 

These integrals are called iterated integrals.

Example 13:
Using Fubini’s theorem show that 12 21D f D f if  12D f and

 21D f are continuous.

Solution :
 Let A R and :f A  continuous

T.P.T 12 21D f D f

Suppose 12 21D f D f

0 0,x y in domain of f such that

    12 21 0D f a D f a 

without loss of generality,     12 21 0D f a D f a  or

  12 21 0D f D f a  ………………………………….. (I)
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  12 21 , 0
A

D f D f x g  

Let    , ,A a b c d 

 By Fubini’s Theorem

   

    

       

21 21

2 2

, ,

, ,

, , , ,

d b

A c a

d

c

D f x y D f x y dx dy

D f b y D f g y dy

f b d f b c f a d f a c

 

  





   

  



Similarly,

         

   

  

12

21 12

21 12

, , , , ,

, ,

, 0

A

A A

A

D f x y f b d f b c f a d f a c

D f x y D f x y

D f D f x y

   

 

  



 



Which is contradiction to (I)

12 21D f D f proved

Example 14:
Use Fubini’s Theorem to compute the following integrals.

1)

211

2 2

0 0

.

1

x
dy dx

I
x y




  

Solution :
2

2

2

11

2 2

0 0

11

2 2

0 0

11

1

2 2
0 0

.

1

1

1
tan

1 1

x

x

x

dy dx
I

x y

dy
dx

x y

y
dx

x x














 


 

 
   

   

 

 


1

2
0

1
. .

41
dx

x
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1

2
0

1
2

0

4 1

log 1
4

log 1
4

dx

x

x x

x










 
   

 

    



ii)
1 1 2

0

sin
2

y

x
I dy dx

        

Solution :

  , ; 1,0 1C x y y x y    

By Fubini’s Theorem

 

1 1 2

0

1 2

0 0

1 2

0

0

1 2

0

sin
2

sin
2

sin
2

sin
2

y

x

x

x
I dxdy

x
dxdy

x
y dx

x
x dx









      

      

      

      

 

 







 

 

 

x  1
Put

2

,
2

x
t




t 0
2



2

2

x
dx dt

dt
xdx









 

 

2 2

2
0

0 0

1 1
sin sin cos

1 1
0 1

dt
I t t dt t
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2.7 REVIEWS

After reading this chapter you would be knowing.
 Definition of Measure zero set and content zero set.
 Oscillation  ,O f a

 Find set contain measure zero on content zero
 Statement of Lebesgue Theorem
 Definition of characteristic function & its properties.
 Fubini’s Theorem & its examples.

2.8 UNIT END EXERCISES

1. If B A and A has measure zero then show that & has measure
zero.

2. Show that countable set has measure zero.
3. If A is non-empty open set, then show that A is not of measure

zero.
4. Give an example of a bounded set C if measure zero but C does

not have measure zero.
5. Show by an example that a set A has measure zero but A does

not have content zero.
6. Prove that    1 1, .... ,n na b a b  does not have content zero if i ia b

for each i .
7. If C is a set of content zero show that the boundary of C has

content zero.
8. Give an example of a set A and a bounded subset C of A measure

zero such that c

A

 does not exist.

9. If f & g are integrable, then show that gf is integrable.

10. Let  0,1U  be the union of all open intervals  ,i ia b such that

each rational number in  0,1 is contained in some  ,i ia b . Show

that if cf  except on a set of measure zero, then f is not

integrable on  0,1 .

11. If    : , ,f a b a b   is continuous; then show that

   , ,
b b b b

a x a x

f x y dx dy f x y dy dx     

12. Use Fubini’s theorem, to compute
2 2

0 0

sin x
dy dx

x y
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13. Let    1,1 0, 2A    and :f A  defined by

 , sin xf x y x y ye  compute
A

f

14. Let    , , sinf x y z z x y  and    0, , 0,1
2 2

A        

computer
A

f .
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3
LEBESGUE OUTER MEASURE

Unit Structure :

3.0 Objective

3.1 Introduction

3.2 Algebra

3.3 Extension Measure

3.4 Lebesgue outer measure

3.5 Properties of outer measure

3.6 Summary

3.7 Unit End Exercise

3.0 OBJECTIVE

After going through this chapter you can able to know that
 Concept of Algebra, Measurable set.
 Extension measure in n

 Lebesgue measureable set
 Lebesgue outer measure & its properties.

3.1 INTRODUCTION

In this chapter we shall fist study such a verified theory
function d-dimensional value based on the notation of a measure,
and then we shall use this theory to build a stronger and more
flexible theory.

Now if we want to partition the range of a function, we need
same way of measuring how much of the domain is sent to a
particular region of the partition, To set a feeling function what we
are aiming function let us assume that we want to measure the
volume of subsets 3,A C and that are denote the volume of A by

 A .

Then function we have
i)  A should be non-negative number as  .
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ii)   0   it will be convenient to assign a volume to the empty

set.
iii) If 1 2, ,....., nA A A are non overlapping disjoint sets then

 
1 1

n n
n n

A A 


 

    


This means that the volume the whole is equal to the sum of
the volume of the parts. This problems leads us to the theory of
measures where we try to give a notation of measure to subsets of an
Euclidean space.

Defenition :

The Euclidean norm on n is  
1

2 2 2
1 .... dx x x   .

The distance between , nx y  is x y

3.2 ALGEBRA

Definition :
Let X be a set. A collection A of subsets of X is called a

algebra of the following hold.

i) A
ii) A A X A A  

iii) 1 2
1

, ,...., i
i

A A A A A




  

Note :
The pair  ,X A is called measurable space and elements of A

are called measurable sets.

Example 1 :
Let  1,2,3X  and     1 1 , 1, 2,3 , , ,b X 

  2 1,2,3, 3 , ,b X  . Check whether 1b and 2b are both algebras or

not.

Solution :
I) Let  1,2,3X  and 1b is not Algebra.

Since it does not contain  1
C

.

II) 2b is Algebra since it satisfies all condition of Algebra

i.e. 1X b

2b
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  21,2 b &   21,2
C

b

2b is Algebra.

Example 2 :
A measure on a topological space X whose domain is the

Borel algebra is called a Borel measure.

Example : For every x X , the Dirac measure is given by

 
1

0
x

if x A
A

if x A


 
 

 

 

Definition :
Let  be a set function whose domain in a class A of subsets

of a set X and whose values are non-negative extended reals, we say

that  is contably additive if  
1 1

k k
k k

A A 


 

    
 whenever,  kA is

a sequence of painoise disjoint set in A whose union is also in A.

Theorem :
Let  be a finitely additive set function, defined on the

Algebra A. Then  is countably additive iff it has the following

property : if nA A and 1n nA A  Anti for each positive integer n ,

and if
1

n
n

A A




 then  
1

limn n
n

n

A A 





    
 .

Proof :
Suppose  is countable additive Let  nA be a sequence of

elements in A s.t. 1 2
1

,......, i
i

A A A A A




   

s.t.  
1

limi n
n

i

A A 





    


Define 1 1B A

1K K KB A A  for 2K 

Examples 3:
Let  ;iA i I be collection of Algebra. Show tha i

i I

A

 is

a Algebra, but i
i I

A

 is not in general.

Solution :
Let i

i I

Ai A
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To show that A is a Algebra
a) If A

iA is Algebra, i I 

iA i I  

i
i I

A A


 

b) Let A A

i
i I

A A


 

iA is Algebra i I 

 For C
i iA A A A i I    

c
i

i I

c

A A

A A



 

 



c) Let , 1,2....kA A k  

then kA Ai i i   

1

1

1

k i
k

k i
k i I

k
k

A A i

A A

A A







 





  

 

 



 









i
i I

A A


 is a Algebra

Now, we have to show that iA is not a Algebra.

Let  1,2,3X 

Let     1 , , 1 , 2,3A X 

    2 , , 3 , 1,2A X 

then 1A & 2A are Algebra but 1 2A A is not Algebra.

  1 21 A A  but   1 21,3 A A  .

Clearly Bi A i  and 'Bi s are pairwise disjoint we first show that

1

k

k
i

A Bi




By induction on ‘k’
The result is trivial when 1k 

Assume the result is true for 1k 
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i.e.
1

1
1

k

k
i

A Bi







Now
1

1 1

k k

k
i i

Bi Bi B


 

  

 1 1k k k

k

A A A

A

 





 The result is true for k.
by introduction is true for all k

1

1
k

k
i

A Bi k


    

Note that
1 1 1

k

k
k k i

A A Bi
 

  

     
  

1
k

k

B






 is countably additive, we have

   
1 1

k k
k K

A B B  


 

    


 

 

1

1

lim

lim

lim

n

k
n

k

n

k
n

k

n
n

B

B

A

















            







Conversely,

Suppose whenever if 1 2 3...., ,rA A A Ai B Ai   A A

Then  
1

lim n
n

i

Ai A 





    


T.S.T.  is countably additive

Let  nA be a pairwise disjoint sets in A.

Define
1

k

k
i

B Ai


 then kB  A and 1 2 .......B B 

By hypothesis, we have

 
1

lim n
n

i

Bi B 
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But
1 1 1

i

k
i i K

Bi A
 

  

    
  

1i

Ai





 

 

 

1 1

1

1

1

lim

lim

lim

i i

n
n

n

n
i

n

n
i

i

Ai Bi

B

Ai

Ai

Ai

 









 

 













              



    









 











Theorem :
Let A be a Algebra, If  ,u v are measures on A,

, 0t t  and A A hen the following are measures on A.

a)   defined by       E E E E A      

b) t , defined by     ,t t E E A   

Proof :
a)   defined by       ,E E E E A       is a measure

on A.

 &  are measure on A.

They are countably additive non-negative set function.

  E   is also countably additive non-negative set function

whose domain is A.

   is a measure on A.

b)     t E t E 

 is a measure on A

 is countable additive non negative set function whose

domain in A.

 for E A
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    t E t E  and t is also countably additive non-negative

set of function whose domain is A

t is measure on A.

3.3 EXTENSION MEASURE

Definition :
Let X be a set, nA Exterior measure or outer measure on X is

a non-negative, extended real valued function * whose domain

consist of all subsets of X and which satisfies :

a)  * 0  

b) (Monotonicity) if A B then    * *A B 

c) (Countable sub-additivity)

For any sequence  nA of subsets of X, we have

 * *

1 1
n n

n n

A A 


 

    


Theorem :
Let C be a collection of closed rectangle of n , For R C , let

 R denote the volume of R. If * is defined by

     *

11

inf ; ,k k
kk

A C C C k A 
 



      
   
 

For ,nA A   then * is exterior measure on n .

Proof :

T.S.T. * defined by    *

1

inf ;k k
k

A C C 




     
   
 is closed

rectangle where nA is on exterior Measure on n .

We first shows that

  ;k k kV C C is closed set A C      

Where nA

Let kR  rectangle with side length ‘k’ and centre origin.
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Then
1

n
k

k

R




 

 for any
1

n
k

k

A R




 

 kR covers A

 
1

;k k
k

C C






 closed rectangle

1
k

k

A C 




 




We now show  * 0  

Let 0

Let 0, ..... 0,n ny yR               be a rectangle in n with

  &R R   

 R covers 

 By definition of * ,  *  

This is true for any 0

 * 0   …………………………………………. (1)

Let nA B 

T.S.T.    * *A B 

If  kC Covers B, then  kC covers A

   

   

1 11

1 1

: :

inf : inf :

k k k k
k kk

k k k k
k k

C B C C A C

C B C C A C

 

 

  

 

 

 

               
        

               
         

 

 

 

 

   * *A B   …………………………………….. (2)

Let  nA be a sequence of subsets of n we show that

 * *

1 1
n n

n n

A A 


 

    


Let 0 by the definition of *

 a cover  
1in i

R



of nA such that

   *

1

2
i

n
n n

i

R A 
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Then
1 1

in
n j

R
 

 

     
  covers

1
n

n

A





 

  

 

 

*

1 1 1

*

1

*

1 1

*

1

2

2

n n
n n i

nn
n

nn
n n

n
n

A R

A

A

A

 







 

  





 

 





             

 

 

 

 



 











 *

1
n

n

A




 ……………………………………. (3)

From (1) (2) & (3)

* is an exterior measure on n

Note :
By above lemma, the exterior measure lemma attempts to

describe the volume of a set nE  by approximating it from
outside. The set E covered by rectangle and if the covering gets
finer, with fewer rectangles overlapping the volume of E should be
close to the sum of the volumes of the rectangles.

3.4 LEBESGUE OUTER MEASURE

Definition :
* is called the Lebesgue exterior (or outer) measure on n

and is denoted by *m .

Now the consequences of the definition of exterior measure
on n .

1) If  kR are countably many rectangles and kE R then

   *
km E V R

2) For a given 0 there exist countable many rectangle  kR with

kE R such that      * *
kk

m E R m E E   .

Example 4:
Show that exterior (or outer) measure of a closed rectangle is

its volume i.e.    *m R V R where R is a rectangle or a 0
nb in  .
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Solution :
Let R be a closed rectangle in n

   *tst m R V R

Note that  R covers R

 by definition of  *m R , we get

   *m R V R ……………………………………. (1)

Let 0

By definition  * ,m R a countable cover  iR of closed

rectangles of R.

   *

1 2
i i

i

R m R





 

For each i choose an open rectangle iS such that i iR S and

    12
i i i

V S V R



 

Then
1 1

i i
i i

R R S
 

 

   

 
1i i

S



 is an open cover of R

R is compact this open cover has a finite sub cover say

1

m

i
i

R S


 (after renaming)

We have

     
1 1

m

i i
i i

V R V S v S


 

  

 

 

 

 

1
1

1

*

*

2

2

2 2

i i
i

i
i

V R

V R

m R

m R










      

 

  

 





This is true for any 0

   *V R m R

From (1) & (2)

   *V R m R



49

Example 5:
Show that exterior (or outer) measure of an open rectangle in

n is volume.
Solution :

Let iS be an open rectangle them i iR S where iS is closed

rectangle  iS is a cover of R.

 by definition      *
im R V S V R  ……………. (1)

Let 0 be  iR be a countable cover of closed rectangle of R such

that    *

1
2i

i

V R m R




  for each i choose an open rectangle iS

such that i iR S &   12iiV R 


Then
1 1

i i
i i

R R S
 

 

   

 
1i i

S



 is an open cover of R

R is compact. This open cover has a sub cover say

1

m

i
i

R S


 (after renaming)

We have

     
1 1

m

i i
i i

V R V S V S


 

  

  

 

 

 

1

1

1

*

*

2

2

2 2

ii
i

i
i

V R

V R

m R

m R











 

 

  

 





This is true for any 0

   *V R m R  ……………………………….. (2)

From (1) & (2)

   *V R m R

Example 6:
Show that exterior measure of a point in n is zero.
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Solution :
Let  1 2, ,......, n

na a a a 

To show that  * 0 0m 

Let 0 then the closed rectangle.

1 1

1 1

1 1

2 2

,
2 2

, ......................
2 2

n n

n n

R a a

a a

 
      

  

 
     

  



Covers  a

 By definition of   *m a , we have     *m a V R 

This is true for any 0

  * 0 0m 

3.5 PROPERTIES OF OUTER MEASURE

Exterior measure has the following properties.
i) (Empty set) The empty set  has exterior measure  * 0m   .

ii) (Positivity) we have  *0 m A  for every subset A of n .

iii) (Monotonicity) If nA B  , then    * *m A m B .

iv) (Finite sub-additivity) If  j j J
A


are a finite collection of subset

of n then  * *
j j

j J j J

m A m A
 

     


v) (Countable sub-additivity) if  j j J
A


are a countable collection of

subsets of n then  * *
j j

j J j J

m A m A
 

     


vi) (Translation invariance) If E is a subset of n and nx  then

   * *m x m   .

Let ,n nx E  

   * *tst m x m  

Let 0 , by definition of  *m 

 a countable cover  iR of closed rectangles in n for s.t.

   *

1
i

i

V R m E




   ………………………………… (1)
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We now show that  
1

i
i

x E x R




  

Let a x E a x y    

1
i

i

a x y E R




    

ia x R   for some i

ia x R   for some i

 
1

i
i

a x R




  

 
1

i
i

x E x R




   

By definition of *m , we have

   *

1
i

i

m x E V x R




   ………………………………… (2)

We now show that    i i iV x R V R  

Let    , ..... ,i iu iu iu iuR a b a b   then

   1 1 1 1, ...... ,i i i in n in nx R x a x b a x b x       

     
1

n

i ij i ij i
j

V x R b x a x


     

   
1

n

ij ij i
j

b a V R


   ……………………………… (3)

 By 1,2,3 we get

       * *

1 1
i i

i i

m x E V x R V R m E
 

 

      

   * *m x E m E  

This is true for any 0

   * *m x E m E   ………………………………….. (4)

Let &E x E y x   

Then by (4)

   * *m y E m E  

   * *m x x E m x E     

   * *m E m x E   ……………………………………. (5)

By (4) & (5)
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   * *m x E m E  

Theorem :
Show that there are uncountable subset of  whose exterior

measure is zero.
Proof :
Define canter set as follows

Let  0 0,1C 

trisect 0C and remove the middle open interval to get 1C .

i.e.  1

1
0, 2 3,1

3
C

 
 
  



   0,1 \ 1 3, 2 3

repeat this procedure for each interval in 1C we get 2C

       2 0,1 \ 1 3, 2 3 \ 1 9,2 9 \ 7 9,8 9

11 2 20, , ,7 9
9 9 33

C 

             
 

repeating this procedure at each stage we get a sequence of subsets

iC of  0,1 for 0,1,2i 

Note that each kC is a compact subset of  and 0 2,C C C 

The Cantor set ‘C’ is defined as
0

i
i

C C






C  because all end points of each rC is inc and also C is

uncountable

We now compute

   

   

   

* *
0 1

* *
2 1

2

2
* *

3 2 3

2

2 3

2 1
1, 1

3 3

2

9

1 2
1

3 3

2 1
1

3 3

1 2 2
1

3 3 3

m C m C

m C m C

m C m C

   

 

  

   

   





in general,
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2 2

*

2 3 1

3

2 2

1 2 2 2
1 .....

3 3 3 3

2 2 3 2 2
......

3 3 3 3 3

k

k k

k

k

m C








     

 
     
 
 

 



   

 

2

1

* *

*
1

1 2
1

3 32 2

23 3
1

3

2 2
1 1

3 3

2

3

2

3

k

k

k

k

k

C C k

m C m C k

m C k





                
           

 
          

    

 

  

     



letting k  , we get

 

 

*

*

0 0

0

m C

m C

 

 

Theorem :
Show that exterior measure of n is infinite.

Proof :
Let 0M  and R be a rectangle s.t.  V R M

note that n 

By monotonicity of *m

   * * nm R m 

But    *m R V R M 

 * nm M 

This is true for any 0M 

 * nm 

Theorem :
If E and nF  such that  , 0d E F  then show that

     * * *m E F m E m F  .
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Proof :
Let , nE F  be s.t.  , 0d E F  tst      * * *m E F m E m F  .

By countable subodditivity property      * * *m E F m E m F  ..

(1)

Let 0

By the definition of *,m  countable  Ri of closed rectangles in n

for E F such that    *

i

V Ri m E F   . ………………. (2)

We categorize the collection  Ri into 3 types :

1) Those intersecting only E
2) Those interescting only F
3) Those intersecting both E & F

Note that if a rectangle  intersect both E & F, then

   , 0d R d E F  subdivide such the rectangles into rectangles

whose diameter is less than  ,d E F .

This subrectanlges intersect either E or F not both.
 We can have a contable collection  2R of rectangles which

intersects either E or F but not both.

Let  1 ; iI i R E  

 2 ; iI i R F  

1 2I I  

  ,i i I
R


 covers E, we have

   
1

*
i

i I

m E V R




Similarly,    
2

*
i

i I

m F V R




       

 

1 2

* *

1

i i
i I i I

i
i

m E m F V R V R

V R

 





   



 



 *m E F  (by (2))

This is true for any 0
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     * * *m E m F m E F    ……….. (3)

From (1) & (3)

     * * *m E m F m E F  

Theorem :
If a subset nE  is a countable unit of almost disjoint

closed rectangle .

i.e.
1

i
i

E R




 then show that    *

1
i

i

m E R




  .

Proof :

Let
1

i
i

E R




 where iR ’s are almost disjoint closed rectangles.

tpt    *

1
i

i

m E R






By countably subadditivity proposition of

     * * *

1 1 1
i i i

i i i

m E m R m R V R
 

  

     
 

( R is rectangle    *m R V R  )

Let 0 , by definition of *,m  a countable cover  iR of closed

rectangle n for E s.t.

   *

1
i

i

V R m E




 

For each i , choose open rectangle iS s.t. i iS R &

   
2

i i i
V R V S


 

Note that  , 0i jd S S  for i j

     * * *
i j i jm S S m S m S   for i j …………………….. (1)

Using (1) finite no. of times, we get  * *

1 1

kk

i i
i

m S m S


    


1

i i

k

i
i

S R E i

S E


  

 







By monotonicity
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     * *

1 1

k k

i i
i i

m E m S V S k
 

      

Let k 

      

 

*

1 1

1

2i i
i i

i
i

m E V S V R i

V R

 

 





  

 

 



This is true for any 0

   *

1
i

i

m V R




   ………………………………………….. (2)

From (1) & (2)

   *

1
i

i

m V R




 

Theorem :
Show that
1) If  * 0m A  then    * *m A B m B

2) If  * 0m A B  then show that    * *m A m B

3)      * * *\m A B m A m B 

Proof :
1) As B A B 

By monotonicity

   * *m B m A B  …………………………………. (1)

Also by countable subadditive of *m

     * * *m A B m A m B 

 *m B ……………………………………… (2)

From (1) & (2)

   * *m A B m B

2) If  * 0m A B  tst    * *m A m B

   

     * * *

\ \

\ \

wk A B A B B A

m A B m A B m B A

  

   



given that  * 0m A B 

   * * 0m A B m B A  
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but    * *0 0m A B m A B   

 * 0m A B 

   * *0m A B m B A   

WKT    * *m A m A B 

   * *m A m A B 

similarly we show that

   * *m B m A B 

   * *m A m B 

3)      * * *\m A B m B m A 

Proof :
Since A and B are measurable sets

CA is also measurable and we have

 /B A B A A B  

/ CB A B A  is measurable.

& CB A  is measurable

 \B A B A   union of disjoint measurable sets

       * * * *\ \m A B A m A m B A m B   

     * * *\m B A m B m A  

Theorem :

Let nE  show that     * *inf ; &m E m E open   

Proof :
Let nE 

tst     * *inf ; nm E m E and open in        

Let  be open in n s.t. E 

Then by monotonicity of *m ,    * *m E m 

 *m E is lower bound of   * ; ,m open  

    * *inf ; ,m E m E open     ……………………. (1)

Let 0 , then by definition of *m

 an countable cover  iR of closed rectangle of E s.t.

   *

2i
i

V R m E  
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For each im let iS be open rectangles containing iR s.t.

    1
2i iV R V S i  

Let
1

iS


 then  is open &
1 1

i iE R S
 

   

   

 

* * *

1 1

1

i i
i

i
i

m m S m S

V S









      











  

 

 

 

1

1

1

*

*

2

2

2 2

ii
i

i

V R

V R

m E

m E













   

 









This is true for any 0 .

   

  

* *

*inf ; ,

m m

m is open

   

    

   * *m m E  

Theorem :
For every subset E of ,n  a zG

Subset G of n s.t. G E &    * *m G m E

Proof :
Let nE 

we first show that

   * *infm E m i E    and  is open subset of n

Let 0 ,
Then for each , kk     open in n & k E  s.t.

   * *

2kkm m E  

let
1

k
k

G




 

G is G -set and G E

By monotonicity
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   * *m E m G ……………………………………… (1)

Note that kG  k

     * * *

2kkm G m m E     

This is true for any 0

   * *m G m E  …………………………………… (2)

By (1) & (2)

   * *m G m E

Thoerem :

There exist a countable collection  j j J
A


of disjoint subset of

 such that  * *
j j

j J j J

m A m A
 

     


Solution :
Consider rational  and realy 

 ;x x    

We known that any two cosets are either identified or disjoint.

We now show that if A  then  0,1A 

Let A x  

Let q be rational number in  , 1x x  

then  0,1x q 

Also, x q x A   

   0,1 0,1x q A A      

For each \A  choose

 0,1Ax A 

Let  ;AE x A  

By construction  0,1E 

Let
 1,1q

X q E
 

 



We now show that

   0,1 1,2X  

Let  1,1q    Note that  0,1E 
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 for any  , 1,2x E q x   

This is true for any  1,1q   

Theorem :

There exist a finite collection  j j J
A


of disjoint subset of 

such that  * *
j j

j J j J

m A m A
 

     


Proof :
Consider  & 

 /x x    

We known that any two cosets are either identical or disjoint.

We now show that if A  then  0,1A 

Let A x  

Let q be a rational number in  , 1x x   then  0,1x q 

Also, x q x A   

   0,1 0,1x q A A       

For each \A  choose  0,1Ax A 

Let  /AE x A  

By construction  0,1E 

Let
 1,1q

X q E
 

 



We now show that    0,1 1,2X  

Let  1,1q   

Note that  0,1E 

 for any  , 1,2x E q x   

This is true for any  1,1q   

There exist a finite collection  j j J
A


of disjoint subset of  such

that  * *
j j

j Jj J

m A m A


 
 

 


Consider Q 
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 | |Q x Q x   

We know that any two cosets one either identical or disjoint.

We know show that if |QA then  0,1A Q

Let A x Q 

Let q be a rational number in  , 1x x   then  0,1x q  .

Also x q x Q A   

   0,1 0,1x q A A Q     

For each |QA choose  0,1Ax A  .

Let  | |A QE x A 

By construction  0,1E 

Let
 1,1q Q

X q
 

 




We show that    0,1 1, 2 

Let  1,1q Q  

Note that  0,1E 

 , 1,2x E q x    

 1, 2q E   

This is true for any  1,1q Q  

Let  0,1y 

Then 0y y y A     (say) but Ax A

   

 

     

, 0,1 1,1

1,1

0,1 0,1 1, 2

A

A A

A

y x y

y x y x

q

y q x q E

y x

X X





   

     

   

    

 

     



 By monotonicity of *m

     * * *0,1 1,2m M X m  

 *1 3m x  ………………………………………. (1)
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 1,1q

x q E
 

   by countable subadditive and translation

invariance of *m , we get.

   
 

 
 

* * *

1,1 1,1q q

m X m q E m E
  

   
 

By    *1 0m X 

 * 0m E 

 By Aritimedian property

n  s.t.  * 1
m E

n


Let I be a finite subset of  1,1   with cardinality 3n .

Then  * 1
3 3

q I

m E n
n

 

 by (1)    * *

q I

m x m q E


 

Theorem :
Let  & 0nE       show that    * *nm E m E 

Proof :
To show that    * * , 0nm E m E   

Let 0,

 by definition of  * ,m E  a countable cover of  iR of closed

rectangle in n , for E s.t.    *
iV R m E 

1 1
i i

i i

E R E R 
 

 

    

Let    1 1, .... ,i i i in inR a b a b  

  

  

  
   

1

1

1

1 1

,....., ; ,

,....., ; ,

,....., ; ,

, ..... ,

i n j ij ij

n j ij ij

n j ij ij

i i in in

R x x x a b

x x x a b

x x x a b

a b a b
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iR is a closed rectangle

   n
i iV R V R  

1
i

i

E R 




  by monotoricity & countable additive property we get

       

   

* *

1 1 1

*

n
i i i

n n
i

m E m R V R V R

V R m E

   

  

  

  

  

  



This is true for any 0

   * *nm E m E   …………………………………….. (1)

let 1 1
E E 


  

 by (1)

  

 

* 1 * * 1

* *1 1
n

m E m E

m E m E

 

 
 

 

    

   * *nm E m E   ………………………………… (2)

From (1) & (2)

   * *nm E m E 

3.6 SUMMARY

In this chapter we have learned about.
 definition of  -Algebra, bored algebra
 measure on a set.
 The extension Measure

 Lebesgue outer Measure  * on n

 Properties of lebesgue outer measgure.

3.7 UNIT END EXERCISE

1) Let  , , ,X a b c d and   1 , ,A X d and   2 , , ,A X d

 , ,a b c check whether 1A & 2A are both algebra or not. Also

check wheter 1 2A A is an algebra or not.

2) Show that exterior measure at any countable subset of n is
zero. Justify the converse?
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3) Show that the outer mesuration interval is its length.

4) Show that if  F I  is a collection of  -Algebra on X then

F  is also a  -Algebra on X.

5) If a subset nE  is a countable union of almost disjoint

closed rectangle then show that    *

1
i

i

m E R




 .

6) If 1A and 2A are measurable subsets of the closed interval  ,a b

then 1A - 2A is measurable and if 1 2A A then

 1 2 1 2m A A mA mA   .

7) Show that for any set A,  * *m A m A x  where

 ;A x y x y A    

8) Show that for any set A and any 0 , there exist an open set
O such that 0A and * *0m m A  .

9) Compute the Lebesgue outer measure of    1 2 3B   

10) Prove that if the boundary of k has outer measure zero
than  is measureable.

11) Let  be an arbitary collection of subsets of a set. Show that for
a given  A C there exists a countable sub-collection AC of

C depdending on A such that  AA C .

12) Check that * is an outer measure on R. Not

i) Let X be any seet and    * : 0,P X   be given by

i)  * 0A  if A is countable

=1 otherwise

ii)
 * 0

then be on infinite set
1

A if A finite
X

if otherwise

  


  
 

  

iii)  * 0A  if A 

= 1 otherwise
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4
LEBESGUE MEASURE

Unit Structure :

4.1 Objective

4.2 Introduction

4.3 Lebesgue Measure

4.3.1 Properties of measurable sets

4.4 Outer Approximation by open sets

4.5 Inner approximation by closed sets

4.6 Continuity from above

4.7 Borel Cantelli Lemma

4.8 Summary

4.9 Unit End Exerises

4.1 OBJECTIVE

After going through this chapter you can able to know that
 Construction of Lebesgue measure in n .
 Lebesgue Measurable set in n .
 Properties of measurable sets.
 Existance of non-measurable sets.

4.2 INTRODUCTION

In the previous chapter we have studied about Lebesgue outer
measure *m is not countability additive and it cannot be measure. So
that we have to cover with subset of n for which *m is countably
additive this subclass a collection at Measurable sets. Now we shall
define lebesgue measure of a set using the lebsgue outer measure
and discuss properties of lebesgue measure set.

4.3 LEBESGUE MEASURE

Definition - (Lebesgue measurability)
Let E be a subset of n we say that E is Lebesgue

measurable, or measurable if we have the identity

     * * *m A m A E m A E 
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4.3.1 Properties of measurable sets :
Following are the properties of measurable sets :

a) If E is measurable, then C nE E is also measurable.

b) Any set E of exterior (or outer) measure zero is measurable. In
particular, any countable set is measurable.

c) If 1 2&E E are measurable, then 1 2E E and 1 2E E are

measurable.
d) (Boolean algebra property) If 1 2, ,... nE E E are measurable then

1

n

jE &
1

n

jE are measurable.

e) (Translation in variance) If E is measurable & nx  then x E

is also measurable, and    m x E m E  .

Lemma : (Finite additivity)

If    
1

k

ji j J
Ei E

 
 are a finite collection of disjoint

measurable sets and any set A, we have

 * *
j j

j J j J

m A E m A E
 

     
 

Further more we have

 j j
j J j J

m E m E
 

     


Proof :
We prove by induction on K

The result is trivial when K=1
Assume result is true for k-1
We prove result for K

Let
1

k

i
i

E E




tpt    * *

1

k

i
i

m A E m A E


 

Now kE is measurable we have for nA E   .

       * * * C
k km A E m A E E m A E E     

But   kA E E  = kA E

 kE E
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1

1

C C
k k

k

i
i

A E E A E E

A E






    

   

 

      

   

 

* * *

* *

1

*

1

k i

k

k i
i

k

i
i

m A E m A E m A E

m A E m A E

m A E





  

 



  

 









 The result is true for K
By introduction, it is true for ‘n’.

ii) Put nA

Theorem :
If A B are two measurable sets then B A is also

measurable &      m B A m B m A 

Proof :
tst B A is measurable.

Suppose A & B are measurable
 intersection of two measurable set is measurable & complement
of a measurable set is measurable.

CB A B A   is measurable

Note that  B A B A 

which is a disjoint union.
m is finitely additive

     

     

m B m A m B A

m B A m B m A

  

  

Example 1 :
Let A be a measurable set of finite outer measure that is

contained in B show that      * * *m B A m B m A 

 A is measurable
By definition for this B

     

     

* * *

* * *

m B m B A m B A

m B m A m B A

 

 



 *m A  we get

     * * *m B A m B m A 
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Example 2 :
Suppose A E B  where A & B are measurable sets of

finite measure show that if    m A m B then E is measurable.

  A & B are measurable CB A B A   is measurable.

Note that  B A B A   A B .

which is a disjoint union.
m is finitely additive, we get
     

      

     

 

* *

*

0

|

0

0

m B m A m B A

m B A m B m A

A E B E A B A

m E A m B A m B A

m E A

 

 

   

  

 







E A is measurable

 E A E A   is measurable

Example 3 :
Show that if 1E & 2E are measurable then

       1 2 1 2 1 2m E E m E E m E m E   

Solution :
Suppose 1E & 2E are measurable not that

 1 2 1 2 1E E E E E  which is a disjoint union.

By finite additie property of ‘m’

     1 2 1 2 1m E E m E m E E  ……………………….. (1)

also    2 1 2 2 1E E E E E  

which is a disjoint union.

By finite additivity of ‘m’

     2 1 2 2 1m E m E E m E E  ……………………….. (1)

     2 1 2 1 2m E E m E m E E  

subs in 1

       

       
1 2 1 2 1 2

1 2 1 2 1 2

m E E m E m E m E E

m E E m E E m E m E
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Theorem :

Let  
1k k

E



be a countable disjoint collection of measurable

sets prove that for any set A,  * *

1 1
k k

k

m A E m A E




    
  .

Proof :

Let  
1k k

E



be countable collection of disjoint measurable

sets.

Let nA

tpt  * *

1 1
k k

k

m A E m A E




    
  .

By countable subadditivity property of *m we get,

 * *

1 1
k km A E m A E

                    
  

 *

1
k

k

m A E




  ………………………….. (1)

Also by finite additive property of m, we get

 

 

* *

1 1

*

1

*

1

k k
k k

m

k
k

m

k
k

m A E m A E

m A E

m A E

 

 





                   

    



 





 





This is true for all ‘m’

 * *

1 1
k k

k k

m A E m A E


 

           
  ……………………….. (2)

from (1) & (2)

 * *

1 1
k k

k

m A E m A E




           
 

Theorem :
Show that the union of a countable collection of measurable

set is measurable.
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Proof :

Let  
1k k

A



be a countable collection of measurable sets and

1
k

k

E A




 .

tst E is measurable.

Define 1 ,B A & for 2k 
1

1

k

k k iB A A


 

Since finite union of complement m-set are measurable

kB is measurable.

Clearly kB ’s are pairwise disjoint

  

1

1 1 1

1

1 1

1

1 1

1 2 1 3 1 2

1

....

k

k k i
k k

Ck

k i
k i

Ck

k i
k

C C C

k
k

B A A

A A

A A

A A A A A A

A E

  

 

 

 

 







      

             

             

    

 





      

  

 

 











Example 4 :
Show that the intersections of a countable collection of

measurable set is measurable.

 Let A be a subset of n and for n .

Define
1

n k
k

F B E




 

kB S are measurable

nF is measurable

 By definition

     

   

* * *

* *

C
n n

C C C C
n n n

C C
n

m A m A F m A F

F E F E A F A E

m A E m A F
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     * * * C
nm A m A F m A E    …………………….. (1)

Now

 * *

1

n

n km A F m A B
            

  

 

 

 

 

*

1

*

1

*

1

*

1

n

k
K

n

k
K

n

k
K

n

k
K

m A B

m A B

m A B

m A B









    

    





















 By (1)

     * * *

1

n
C

k
k

m A m A B m A E


   

 LHS is independent of n, we have

     * * *

1

n
C

km A m A B m A E   

But

 

 

 

     

* *

1

*

1

*

1

* * *

k

k

k

C

m A E m A B

m A B

m A B

m A m A E m A E







            

    



 



 





 







As    CA A E A E    by countable subadditivity proposition of
*m .

     * * * Cm A m A E m A E   ………………………. (3)

By (2) & (3)

     * * * Cm A m A E m A E  

By definition E is measurable.
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Example 5 : Countable additive

If  j j J
E


are a countable collection of disjoint measurable

sets then j
j J

E

 is measurable and  j j

j J j J

m E m E
 

     


 Without loss of generality we may assume J  suppose

 
1k k

E



be a countable collection of disjoint measurable set we first

show that kE E measurable let n kF E .

then by previous exercise we get E is measurable.

We now show that

   
1

km E m E




By subadditivity proposition of *m

   

 

* *

1

*

1

k

k

m E m E m E

m E





     







 
1

k
k

m E




 ………………………… (*)

By finite additivity property and monotonicity of *m

we have as nF E

   

 

1

1

n

n k
k

n

k
k

m E m F m E

m E





     







LHS is independent of n, we get

   
1

k
k

m E m E




 …………………………. (**)

By countable additivity

   
1

k
k

m E m E






Example 6 :
Show that every closed and open rectangles in n are

measurable.

 Let R be a closed rectangle
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tst R is measurable
Let 0 , Let nA

by definition of  *m A

 a countable collection of closed rectangle  
1i i

R



such that

1
i

i

A R




 and    *

1
i

i

V R m A




  ……………………………. (1)

we decompose each iR into finite union of almost disjoint rectangle

 
1

, ,....,i i ikR S S such that 1

1

k

i i
j

ijR R S


      
  .

1
i iR R R R  and C

i j
S R

By finite additive property of M.

   

   

   

1

1

1

1 1 1 1

k

i i
j

k

i i
j

i i
i i i j

i j

i j

i j

m R m R m S

V R V R V S

V R V R V S





   

   

     

      

             





   

Note That  
1i i

R



lover A R

  1

1 1 1
i i i

i i i

A R R R R R R
  

  

         
     

,i j
S i j

    
   

covers CA R

   * 1 *

11

C

i iV R m R m A R
     
  and  * *

,

C
ij

i j

m S m A R
     



 

   

* *

,

*

, ,

ij
i j

ij ij
i j i j

m A R m S

m S V S

      

  

 



By (1)
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*

1

1 1 1

* *

i
i

k

i ij
i i j

C

m A V R

V R V S

m A R m A R





 

  



 

 



 

 





This is true for any 0

     * * * Cm A m A R m A R  

By definition R is measurable.
Example 7 :

Show that every open and closed subsets of n are
measurable.

 Let  max iK K

Let G be an open subset of n consider the grid of rectangle
in n of side length one and whose vertices have integer co-
ordinates.

TST G is measurable.

 Number of rectangle in grid is countable and one almost disjoint
we ignore all these rectangle contained in CG .

Now we have two types of rectangle (1) Those rectangle
contained in G (2) Those rectangle intersect with G & CG .

Let C = set of all rectangle contained in G.

We bisect type (2) rectangle into two rectangle each of its
side length is ½.

Repeat the process iterating this process for arbitrarily many
times we get a constable collections c of almost disjoint rectangle
contained in G.

By construction
R C

R G




Let x G

G is open

We can choose sufficiently small rectangle in the bisection
procedure that contains x is entirely contained in G.



75

R C

R C

R C

x R

G R

G R







 

 

 







G is countable union of closed rectangle and hence G is
measurable.

4.4 OUTER APPROXIMATION BY OPEN SETS

Let nE  such that E is measurable iff for 0 , there is an

open set  containing E for which  *m E  .

 Suppose E is measurable
Let 0

Suppose  *m E 

By the definition of  *m E

 a countable collection of open rectangles  iR such that
1

i
i

E R




and    *

1
i

i

V R m E




  .

Let
1

i
i

R




 which is countable union of opensets.

 is open in n and E 

 is open, it is measurable
E is measurable

 E E  which is a countably disjoint union

     

     

* * *

* * *

m m E m E

m E m m E

   

    

But

     

     

* *

1 1 1

* *

1

i i i
i i i

i
i

R m m R V R

m E V R m E

 

  





    

    

 





Suppose  *m E 

For each k

k KE E R  where
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kR rectangle with centre origin and side length K

For each k
Then      * *

k i im E m R V R K   

 by first case for each K,  k open in n such that

 *

2
k k k k k

E
E m E   .

Let
1

k
k





  which is countable union of open set.

 is open and E 

   

 

 

 

* *

*

1

*

1

*

1

*

1

1 2

C

C
k

k

k
k

k
k

k k
k

k
k

m E m E

m E

m E

m E

m E





















  

     

     

 

 


 























Conversely suppose for a given 0  open set E such

that  *m E  .

Tst E is measurable
Let nA

 is open
 is measurable

     & * *m A m A m A   

Note that     A E A A E    which is a disjoint union.

      

          

     

 

* * *

* * * * *

* * *

*

m A E m A m A E

m A E m A E m A E m A m A E

m A E m A m A

m A
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This is true for any 0

     * * *m A E m A E m A  

E is measurable.

Exercise 8 :
Let nE  S.T., E is measurable iff for each 0 there is sG set G

conlaining E for which  * 0m G E  .

Proof : suppose E is measurable
By outer approximation by an open set.
For each n ,  an open set k E  s.t.

 * 1
km E

k
 

Let
1

k
k

G




  , then G is a G set ant E G

 

 

 

 

* *

1

*

1

*

1

*

*

1

k
K

C
K

K

C
k

K

C
K

K

Gm m K E
E

m E

m E

m E

m E

k













     

            

     

 

 

























This is true for all k

 * 0m G E 

Conversely, suppose  G set G E

s.t.  * 0m G E 

tst E is measurable

Let nA

G is countable int of measurable
Set G is measurable.
By definition

     * * * Cm A m A G m A G  

Note that

    A E A G A G E  
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Which is a disjoint union

      * * *m A E m A G m A G E   

         

     

 

 

* * * *

* * *

*

*

0

m A E m A E m A E A G m A G E

m A G m A G m G E

m A

m A

    

  

 



  







4.5 INNER APPROXIMATION BY CLOSED SETS

Theorem :
Let nE  S.T. E is measurable iff for each 0 , there is a

closed set F E for which  *m E F E .

Proof :
Suppose E is measurable

CE is measurable
Let 0

By outer approximative by open seet  an open set CE s.t.

 * Cm E 

Let CE F  is closed & F E .

Now      * * *Cm E F m E F m E   

    
 

* *

*

CC

C

m E m E

m E

   

  

 

Conversely suppose for 0,  closed set F E such that

 *m E F E

Tst E is measurable

Let nA

 F is measurable
By definition

     * * *m A m A F m A F 

Note that

    A E A F F A F     which is disjoint union.
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* * *

* *

* * *

* * *

*

m A E m A F m A E F

m A E m A E

m A F m A E F m A E

m A F m E F m A F

m A

  

 

  

  

 

  



 



Example 9 :
Let E be a set of finite outer measure show that there is an

F set F & a G set G s.t. F E G  &      * * *m F m E m G  .

[Ans] E is measurable for given each k  open set kG and closed

set kF such that k kF E G  and  * 1
k km G F

k
 .

Let
1

k
k

G G




 &
1

k
k

F F




 .

Then G is SG set and F is F set and F E G  .

We now show that      * * *m G m E m F   G E G E  which is

disjoint union.

     * * *m G m E m G E 

Now CG E G E 

 

 

1

1

C
k

k

C
k

k

k k

k k

G E

G E

G E G E

G F









    



 













   * * 1
k km G E m G F

k
  

This is true for all k

 * 0m G E 

   * *m G m E  ……………………………………. (1)
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* * *

1

1

1

* * 1

C

C
k

k

C C
k k

k

k
k

k

k k

k k

E F E F

m E m F m E F

E F E F E F

E F E F

E F

E F

G F

m E F m G F
k















 

             

    







 



 

  















This is true for all k

 * 0m E F 

Example 10 :
Let E be a set of finite outer measure show that if E is not

measure, then there is an open set  containing E that has finite
outer measure and for which      * * *m E m m E    .

Solution :
 Since E is not measurable

0 0  for any open set  containing E.

 *
0m E  …………………………………… (1)

E has finite outer measure.

By definition  a countable collection of open rectangles  
1i i

R




such that
1

i
i

E R




 and    *
0

1
i

i

V R m E




  .

Let 0
1

i
i

R




 

0E  & 0 open.

By (1)  *
0m E  …………………………. (2)

By countable subadditivity of *m
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* * *
0 0

1 1

* * *
0 0 0

* * *
0 0

i i
i i

m m R V R m E

m m E m E

m E m m E

 

 

    

     

    

 

4.6 CONTINUITY FROM ABOVE

Theorem :

If  
1k k

B



is a descending collection of measurable set and

 1m B  then  
1

limk k
k

k

m B m B





    


Proof :

1 2B B  …. Be collection of measurable sets and  1m B 

tst  
1

limk k
k

k

m B m B





    


Let 1 1k kA B B k   then 1 2A A …… and kA ’s are measurable

( kB ’s are measurable)

   1 1
1 1 1

C
k k k

k k k

A B B B B
  

  

     

1
1

C
k

k

B B




    
 

1
1

C

k
k

B B




    
 

Let
1

k
k

B B






1 1
1

C
k

k

A B B B B




  

 By continuity from below

   1 lim k
k

m B B m A


 ………………………… (*)

B and 1B are measurable

     1 1m B B m B m B  and

   1k km A m B B

=    1 km B m B
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By (*)

        

   

     

1 1

1

1

lim

lim

lim . . lim

k
k

k
k

k k k
k k

k

m B m B m B m B

m B m B

m B m B i e B m B







 


 

 

     




 

Example 11 :
Show by an example that for continuity from aboe the

assumption  1m E  is necessary.

Let  ,kB k  then 1 2 ...B B  and  k km B  we now show

that
1

k
k

B 




 .

Let  
1

,k k
k

x B x B k k




     
,x k k  

 is bounded by x , which is not possible.

     
1

0 lim

k
k

k k
k

B

m m B m B











 

   



Example 12 :
Show that the continuity of measure together with finite

additivity of measure implies countable additivity of measure.

 Let  kE be a countable collection of disjoint measure sets.

Let
1

k

k i
i

A E




Then kA ’s are measurable and 1 2A A ……

Also
1 1 1 1

k

k i k
k k i k

A E E
  

   

    
   

By continvity from below,  
1

limk k
k

k

m A m A





    
 .

But by the finite additive property
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1 1

1 1

1

1 1

lim lim

kk

k i i
i i

k

k k i
k k

k i

k

i
i

k k
k k

m A m E m E

m E m A m E

m E

m E m E

 



 
 





 

    

     



    

















Definition :
For a measurable set E, we say that a property holds atmost

everywhere on E, or it holds for almost all x E , provided there is a
subset 0E of E for which  0 0m E  and the property holds for all

0x E E .

4.7 BOREL CANTELLI LEMMA

Let  
1k k

E



be a countable collection of measurable sets for

which  
1

k
k

m E




 . Then almost all nx  belong to Atmost

finitely many of the 'kE s .

Proof :

Let 0E be the subset of n such that 0 :n
kE x x E   for

infinitely many}

0
1

k
k i k

E E
 

 

    
 

We sow that  0 0m E 

Let k k
k i

F E






Then 1 2F F ……. and 0
1

k
k

F E






Note that  
1

i
i

m E
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Let  
1

i
i

L m E






 

 

1

lim

lim

i k
i k i k

i
k

i k

i
k

i k

m F m E m E

m E

m E

 

 











               

    

 

 





   

 

1

1

1

1

lim

lim

k

i i
k

i k i

k

i
k

i

m E m E

L m E

 


 






      

      

 







 
1

0

i
i

L m E

L L





 

 









 0 0m E 

Example 13 :
Show that there is a non-measurable subset in  .

Solution :  | |Q x Q x   

WKT any two cosets are either identical or disjoint.
We now show that
If |A Q then  0,1A 

Let A x Q 

Let q be a rational number in  , 1x x   then  0,1x q 

Also x q x Q A   

 

 

0,1

0,1

x q A

A 

  

 





For each A Q choose  0,1Ax A 

Let  AE x A Q 

By construction  0,1E 

Let
 1,1q

X q E


 




 For any  , 1,2x E q x   
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 1,2q E   

This is true for any  1,1q Q  

Let  1,1y   then 0y y y Q A     (say)

but Ax A

A A Ay x q Q x A x y Q        for some q Q

 

 

 

     

, 0,1

1,1

1,1

0,1 0,1 1, 2

A

A

A

y x

y x

q Q

y q x q E

y X X X



   

  

    

       





By monotonicity of *m

       * * *0,1 1, 2m m x m  

 *1 3m x 

If E is measurable then q E is measurable and    m E m q E 

 

 
 1,1 1,1q Q q Q

m E m q E
 

      


 



   
 1,1q Q

m X m E


 


 

 
 1,1

1 3

1 3
q Q

m X

m E


  

 


If   0m E  then  
 1,1

0
q Q

m E





1 0 3   and if   0m E  then  
 1,1q Q

m E





Which is contradictin to (1)
E is not measurable.

4.8 SUMMARY

In this chapter we have learned about.
 Lebesgue measureable sets.
 Construction of Lebesgue measurable sets in n

 Properties of Lebesgue measurable sets
 Non-measurable sets
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4.9 UNIT END EXERISES

1. Show that the intersection of a countable collection of
measurable sets is measurable.

2. Show tht every open and closed subset of n are measurable.

3. Show that a set E is measurable if and only if for each 0 ,
there is a closed set F and open set  for which F E  and

 *m F 

4. Let E be a measurable set in n and  m E show that for any

0 there exist a compact set k E such that  *m E K E .

5. If  
1k k

A


is an ascending collection of measurable sets then

 
1

limk k
k

k

M A m A





    


6. The outer measure of  , the set of all rational number is ‘0’.

7. Prove that the outer measure of countable set is zero.

8. Show that the outer Measure of an interval is its length.





87

5
MEASURABLE FUNCTION

Unit Structure :

5.0 Objective

5.1 Introduction

5.2 Measurable Function

5.3 Properties of Measurable Function

5.4 Egoroff’s Theorem

5.5 Lusin’s Theorem

5.6 Summary

5.7 Unit End Exercise

5.0 OBJECTIVE

After going through this chaper youcan able to know that
 Measurable function
 Properties of measurable function.
 Concept of simple function

5.1 INTRODUCTION

In the previous chapter we have studied about Lebesgue
measure of sets of finite and infinite measures. Now we can discuss
Lebesgue Measurability of functions. The definition of measurability
of function applies to both bounded and unbounded functions. We
also discuss simple function and its Approximation.

5.2 MEASURABLE FUNCTIONS

Definition : We say a function ‘f’ on n is extended real valued if it
take value on  .

Definition : A property is said to hold almost everywhere on a
measurable set E provided it holds on 0E E , where 0E is a subset of

E for which  0 0m E 

Example 1 : Let f be a function defined on a measurable subset E of
n . Then the following are equivalent.
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1. For each real number C, the set   :x E f x C  is measurable.

2. For each real number C, the set   ;x E f x C  is measurable.

3. For each real number C, the set   ;x E f x C  is measurable.

4. For each real number C, the set   ;x E f x C  is measurable.

Solution :

   1 2 

Suppose for any C 

  ,x f x C  is measurable ………. (*)

Let C 

tst   ;x f x C  is measurable

Note that     
1

: ;
1

x E f x C x E f x C
nn

          
   

 which is a

measurable as countable intersection of measurable set is measurable
(by (*))

  :x E f x C   is measurable

   2 3

Suppose   :x E f x C  is measurable

     ; ;
C

x E f n C n E f x C     which is measurable as

complement of measurable set is measurable.

  ;x E f x C   is measurable.

   3 4

Suppose   ;x E f x C  is measurable.

Let C 

tst   ;x E f x C  is measurable.

Note that

    
1

; ;
1

x E f x C x E f x C
nn

          
   

 which is measurable as

countable intersection of measurable set is measurable set.

  ;x E f x C   is measurable.

   4 5

Suppose   ;x E f x C  is measurable.

tst   ;x E f x C  is measurable.

Note that
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     ; ;
C

x E f x C x E f x C     which is measurable as

complement of measurable set is measurable.

  ;x E f x C   is measurable.

Definition : An extended real-valued function ‘f’ defined nE  is
said to be Lebesgue measurable or measurable, if its domain E is
measurable and it satisfies one of the above four statement i.e. For
each real number C, the set   ;x E f x C  is measurable.

Example 2 : Show that a real vaued function that is continuous on
its measurable domain is measurable.

Solution :
Let ‘f’ be a continuous function
tst ‘f’ is measurable
Let C 

Note that,     1; ,x E f x C f C    but  ,C  is open subset

of  and :f E   is continuous.

 1 ,f C  is open in E

 1 ,f C G E    for some G is open subset of n but any open-

subset of n is measurable and E is given as measurable.

 1 ,f C G E    is measurable

    1; ,x E f x C f C     is measurable

 By definition
f is measurable.

Example 3 : Let f be an extended real valued function on E. Sho that
1) F is measurable on E and f g a.e. on E then g is measurable

on E.
2) For a measurable subset D of E, f is measurable on E iff the

restriction of F to D and E
D

are measurable.

Solution : Suppose f is measurable and f g a.e.

Let     :A x E f x g x  

Then as f g a.e. we have   0m A 

tst g is measurable.

Let   , ;C x E g x C  

     ; ;Ex A g x C x g x C
A

    

      ; ;Ex A g x C x f x C f g
A
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       ; ;

f g

x A g x C x E f x C E A

 

     

But   ;x A g x C A   and   0m A 

 any subset of measure zero set is measurable

  ;x A g x C   is measurable

f is measurable   ;x E f x C   is measurable

E & A are measurable   0m A 

E A is measurable

       ; ;x A g x C x E f x C E A         is measurable

  ;x E g x C   is measurable

g is measurable.

2)      ; ;
f

x E x C x D f x CD    

  ;x E f x C D   

For  

|
|

; |
|

f
D

fE x E x CD
E

       
    

  

  

| ;

; |

E
D

E
D

x f x C

x E f x C

 

   



Converse

        ; ; ;Ex f x C x D f x C x f x C
D

      

  ;x D f x C   is measurable and   ;Ex f x C
D

  is

measurable.

As union of measurable set is measurable
f is measurable.

5.3 PROPERTIES OF MEASURABLE FUNCTION

Let f and g be measurable function on E that are finite a.e. on E
show that
1) (Linearity) for any ' ' and ' ' , F g  is measurable on F.

2) (Product) fg is measurable on E.
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Solution :
Let   0 :E x E f x   and  g x  then as f and g are

finite a.e. on E we have  0 0m E 

 the restriction  

0
|

f g

E

 is measurable.

 any extension of ' 'f g as an extended real valued function to all

of E is also measurable.
Without loss by generality, we may assume that ‘f’ and ‘g’ are finite
all over E.

Now we first show that ' 'f is measurable for some  .

If 0 then f is a zero function then for any C  .

      : :

0

0

x E F x C x E f x C

if C

E if C

 



    

 
 

 


 

 and E are measurable    ;x E F x C   is measurable

F is measurable.

Suppose 0

      : :x E F x C x E f x C     

  
  

; 0

; 0

Cx E f x

Cx E f x







        
       

…………………………(*)

f is measurable and C &  are red numbers.

 * is measurable

   ix E f x C   is measurable

  f x is measurable

f is measurable ………………………. (1)

We now show that  f g is measurable.

Let C 

If   f g x C 

   

   

f x g x C

f x C g x

  

  

Q is dense in  , then is an r Q such that    f x r C g x  

         ; ; :
r Q

x E f g x C x E f x r x E g x C r
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Q is countable and   :x E f x r  is measurable &

  :x E g x C r   is measurable

 countable union of measurable set is measurable

   :x E f g x C    is measurable

f g  is measurable …………………………… (2)

From (1) & (2)

 f g  is measurable.

2) tpt  fg is measurable

Note that  
2 2 21

2
fg f g f g      

,f g are measurable ,f g f  is measurable it is enough tst

square of measurable function is measurable.

Let 0C 

Then

        2; ; ;x E f x C x E f x C x E f x C C       

Which is union of two measurable set.
by definition, 2f is measurable,

If 0C 

  2;x E f x C E   which is measurable.

 In both the case 2f is measurable

 fg is measurable.

* Composition function  fog

Example 3:
Let g be measurable real valued function defined on E and f a

continuous real valued function defined on all of  show that the
composition fog is a measurable function on E.

Solution :
Given; Let ‘g’ be measurable function and ‘f’ be continuous function
on  .
Let ;g E   be measurable and :f R be a continuous

Let C 
tst :fog is measurable

Note that    ;x E fog x C 
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       1 1 1, ,fog C g f C
     

 ,C  is open subset and f is continuous  1 ,f C  is open in

 .

 1 , 0f C   for some open subset O of  .

O is open in  , we can write

 
1

,i i
i

O a b






    

  

      

1 1 1

1

1

1

1

, ,

,

: :

i i
i

i i
i

i i
i

g f C g a b

g a b

x E g x a x E g x b


  












      



    









  : ix E g x a   is measurable and   : ix E g x b  is

measurable.
 countable union of measurable set is measurable set.

   :x fog x C is measurable

fog is measurable function on E.

Check your Progress :
If f is measurable, then show that

1) kf is measurable for all integer 1K 

2) f  is measurable for a given constant  

3) f is measurable for a given constant  

4) f is measurable

5)        sup ,inf , lim sup lim infn n A n n
n n

f n f n f n f n
 

are measurable.

Definition :
For a sequence  nf of functions with common domain E,a

function f on E and a subset A of E, we say that

1) The sequence  nf converges to ‘f’ point wise E, on A provided

    lim n
n

f n f x


 for all x A

2) The sequence  nf converges to ‘f’ point wise a.e. on A provided

it converges to F pointwise on A B where   0m B 

3) The sequence  nf converges to ‘f’ uniformly on A provided for

each 0, N   such that nf f on a for all n N .
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Theorem :
Let  nf be a sequence of measurable function on E that

converges point-wise a.e. on E to the function f, show that f is
measurable.

Proof :
Let 0E be a subset of E with  0 0m E  and nf f on 0E E .

 0 0m E  & we have ‘f’ is measurable on E iff
0

|f
E E is

measurable.
By replacing E by 0E E we may assume that the  nf converges

to f on E
tst f is measurable
Let C 

tst   ;x E f x C  is measurable

     ; ; lim
n

x E f x C x E f x C


     but

 lim
n

f x C


 iff there are natural nos. n and k for which

 
1

jf x C j k
n

   

    
1

; ; jx E f x C x E f x C
n

                  
 

1 ,k n 

note that  
1

; j
j k

x E f x C
n





      
   

 is measurable.

Countable union of measurable set is measurable

  ;x E f x C   is measurable.

Simple Functions :
Definitions :

A real-valued functions  defined on a measurable set E is

said to be simple if it is measurable and takes only a finite number of
values.

If  is simple, has domain E and takes the distinct values

1...., nC C then
1

k

n

k E
k

C 


 on E, where   ;k kE x E x C   .

This particular expression of  is a linear combination of

characteristic functions is called the canonical representation of the
simple function  .
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Theorem : The simple Approximation Lemma
Let ‘f’ be a measurable real valued function on E. Assume ‘f’

is bound on E. Then for each 0 , there are simple function 

and E defined on E which have the following approximation

properties :

E Ef   and 0 E E E   on E.

Proof :
Suppose :f E R is bounded measurable nf

f is bounded, 0M  such that  f x M x E  

Let  ,c d be an open interval s.t.    ,f E c d ( f is bounded)

Let 0
Consider the partition

0 , .... n dC y y y     of  ,c d with 1 ,1k ky y k n   

Define 1
1 1

,
k k

n n

E k E E E
k k

y y  
 

     where   1
1,k k kE f y y



Note that   1
1,k k kE f y y



    

  

     

1

1

1

; ,

;

; :

k k

k k

k k

x E f x y y

x E y f x y

x E f x y x E f x y







  

   

    

which is measurable. ( f is measurable)

kE are measurable, 1 k n 

 & E are measurable and takes only finite number of values

 & E are simple functions.

Let    ,x E f x c d  

k s.t.  1k ky f x y  

     1E k k Ex y f x y x       …………………. (1)

     E Ex f x x  

Also by (1)     10 E E k kx x y y     

Theorem : The Simple Approximation Theorem
An extended real valued function ‘f’ on a measurable set E is

measurable if and only if there is a sequence  n of simple

functions on E which converges point-wise on E to f and has the
property that n f  on E for all ‘n’.
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If ‘f’ is non negative, we way choose  n to be increasing.

Proof :
Suppose f is measurable

Case (1) Assume 0f 

Let ,n Define   ;nE x E f x n  

Then |
n

f
E is a bounded function.

By simple Approximation Lemma for
1

,
n

  simple functions

 & E such that |
n

f
E n   and 10 n n n

   .

We extend n on E defining  n x n  if  f x n construct the

sequences  n .

We now show that n f  pointwise on E

(1) If ‘f’ is finite

N  such that  f x 

     

       

   

1

1

N

N N

N N N

N

x E

x f x x

f x x x x
N

f x x n
n



 



 

  

    

    

   n x f x  as n 

(2) If f 

 f x N for any N 

 

 lim

n

n
n

x n

x f






 

 

Case (2) ‘f’ is any measurable function
Define     1 max ,0

x
f f x 

    

      

1

1

min ,0f x f x

f x f x f x







  

f  and f  are non-negative measurable function.

 By Case (1),  a sequence of simple functions    &n n  s.t.

n f  pointwise and n f   pointwise.
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n n f   pointwise

n and n are simple function n

n n  a’s also a simple function n .

5.4 EGOROFF’S THEOREM

Theorem Statement (Assume E has finite measure)

Let  nf be a sequence of measurable functions one that converges

pointwise on E to the real valued function f. Then for each 0

there is a closed set F contained in E for which  nf f uniformly

on F and  m E F  .

Proof :
Since nf f pointwise on E, for 0 , and ,x E K  

such that    jf x f x j K     ………………………… (1)

Since we want to get a region of uniform convergence, we
accumulate all x E for which the same N holds for a fixed E .

For any pair k & n define

   
1

: ,n
k jE x E f x f x j K

n

         
   

 

Not all n
kE are empty otherwise it will contradict pointwise

converges of  nf x E  .

jf and f are measurable n
kE is measurable.

Note that from fixed n

1
n n
k kE E  and

1

n
k

k

E E






 By the confinuity of measure.

   lim n
k

K
m E m E




 m E is finite, i.e.  m E  , for the above, 0 , such that

    12
n
k n

m E M E



 

  12n

n
k n

m E E



  by countable additivity).

By construction for each
n

n
kx E

   
1

j j nf x f n k
n

    …………………… (2)
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Let
n

n
kA E

We show that nf f uniformly on A

Let 0 choose 0

0

1
n

n
 

By (2)

   
0

0

1
j j nf x f n k

n
    on 0

0n

n
kE

0

0

n
KnA E

   
0

0

1
j j nf x f n k

n
       on A

nf f  uniformly on A.

Now    Cm E A m E A 

  n

C
n
km E E

    
 

  

 

1

1

1
1 2 2

n

n

C
n
k

n

n
k

n

n
n

m E E

m E E














    



 
 







n

n
kE are measurable and countable intersection of measurable set is

measurable.
A is measurable.

 a closed subset F of A s.t.   2
m A F 

      

   

2 2

m E F m E A A F

m E A m A F

 

 

   







nf f uniformly on A & F A

nf f  uniformly on F.

Examples 4 : Let f be a simple function defined on E. Then for each
0 , there is a continuous function g on  and a closed set F

contained in E for which f g on F &  m E F  .

Solution:
Let f be a simple function defined on E 
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Let f takes the values 1,....., na a be the distance values taken by ‘f’.

1
i

n

i E
i

f a 


 

Where   :i iE x E F x a  

Note that
1

n

i
i

E E




'ka s are distinct 'kE s are disjoint

f is measurable 'ksF are measurable

Let 0

For each ,1 ,k k n  kE is measurable  closed subset kF of kE

such that  k km E F
n




Let
1

n

j
j

F F




F is closed

   

 

 

1

1

1 1

1

C

n
C

k
k

n
C

k
k

n n
C

k j
k j

n
C

k j
j

m E F m E F

m E F

m E F

m E F

m E F





 





           

    

                    

 
 















 











 

 

 

1

1

1

1 1

n

k

n
C

k j
k

n

k k
k

n n

k k
k k

m E F

m E F

m E F
n







 

      

    

    


  















n
n


 



Define :g F  by   ig x a if ix F
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'iE s are disjoint 'iF s are disjoint g is well defined and f g

on F we now show that ‘g’ is continuous on f then
1 1,i k

i k

F F F F 


  and kx F .

 an open interval KI F containing ' 'x 1I F 

 

    0

k

k k y

g y a y I

g y g x a a I

   

       





g is continuous at x.

This is true for any x F

g is continuous on F.

We can extend this continuous function ‘g’ on the closed set F to a
continuous function on  .

Let the new function be ‘g’ then ‘g’ is continuous on  and g F

on f and  m E F  .

5.5 LUSIN’S THEOREM

Statement :
Let f be a real valued measurable function defined on E then

for each 0, there is a continuous function g on  and a closed

set F contained in E for which f g on f and  |m E f  .

Proof :
Let f be a real valued measurable function defined on E.

1)  m E is finite

 by simple Approximation theorem  a sequence  n of simple

function on E such that n f  and n f  on E n .

 for each n there is a continous function ' 'ng on  and a

closed set f nf conained in E for which n ng  on nf &

  12
n n

m E F



 .

n f  pointwise on E

By Egoroff’s theorem
 a closed set 0f contained in E such that  n F  uniformly on

0F and  0 2
m E F  .
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Let
0

n
h

F F






F is closed as countable intersection of closed sets.
Each n is uniformly on  0F F F

n is continuous

f is continuous on F

i.e. f
F

is continous.

We can extend f
F

to a continuous function ‘g’ on  .

Then f g on F

and    C
nm E F m E F 

   

0

0

0

1

1

1
1

|

2 2

2 2

n
n

n
n n

n n
n

n
n

m E F

Em E FF

m E F m E F


















    

                 

      

 

  













5.6 SUMMARY

In this chapter we have learned about

 Concept of measurable functions.

 Properties of measurable functions

 Simple functions & ith Approximation Theorem

 Egoroffs Theorem and LUSIN Theorem of Measurable function.

5.7 UNIT END EXERCISE

1. Pure that “every continuous function is measurable”.
2. Show that the sum and Product of two simple function are simple

function
3. Show that if  , 0,f    is differentiable, than 1f is

measurable.
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4. Prove that if f is a measurable function X, than the set

    1f x X f x     is measurable.

5. Prove that if  : 0,1f   is continous atmost everywhere than f

is measurable.
6. State and prove Egoroff’s Theorem of measurable function.
7. State and Prove Lusin’s Theorem of real valued measurable

function.
8. If ‘f’ is measurable then show that  1f C is measurable, C  .

9. If f is measurable then show that
 

f

f




is measurable.

10. Show that A is Measurable if and only if the set A is

measurable.





103

6
LEBESGUE INTEGRAL

Unit Structure :

6.0 Objectives

6.1 Introduction

6.2 Lebesgue Integral of Simple function

6.3 Definition

6.4 The General Lebesgue Integral

6.5 Summary

6.6 Unit End Exercise

6.0 OBJECTIVES

After going through this chapter you can able to know that
 Lebesgue integral
 Lebesgue integral of a simple function
 Lebesgue integral of a bounded measurable function
 The general Lebesgue integral

6.1 INTRODUCTION

We have already learned simple functions, measurable
functions. Now here we are going to discuss. Lebesgue integral on
this function. Lebesgue integral over come on the class of all
Riemannintegrable functions & the limitation of operations. So now
we defined the general notation of the Lebesgue integral on n step
by step.

6.2 LEBESGUE INTEGRAL OF SIMPLE FUNCTION

Definition :
For a simple function  with canonical representation

 
1

i

n

i E
i

x a X


 defined on a set of finite measure E, we define the

integral of  over E by  
1

n

i i
iE

a m E


 .
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Example 1 : Let  
1

n

i i
E


be a finite disjoint collection of measurable

subset of a set of finite measure E. For 1 ,i n  Let ia  .

If
1

n

i Ei
i

a 


 on E , than  
1

n

i i
iE

a m E


 .

Solution :

Let
1

i

n

i E
i

a 


 s.t. 'iE s are pairwise disjoint which may not

be in canonical form.

Let  
1

k

j j
b


be distinct elements of  ,.....i na a .

Define
j

j i
i I

F E


 where  :j i jI i a a  .

Note that 'jF s are disjoint.

   
j

j i
i I

m F m E


 

1
j

k

j F
j

b 


  is a canonical representation of  .

 By definition  
1

k

j j
jE

b m F




 
1 j

k

j i
j i I

b m E
 

      
 

 
1

n

i i
iE

a m E




6.2.1 Theorem (Properties of integral simple function)
Let  and  be simple functions defined on a set of finite

measure.

Then
1) Linearity : For any ' ' and ' '

 
E E E

          

Proof :

Let
1

i

n

i A
i

a 


 and
1

j

n

j B
j

b 


  be canonival representation

of  and  respectively.

,1 ,1ij i jC A B i n j m    
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then
1 1

n m

i ij
i j

a C 
 

 and
1 1

n m

i ij
i j

b C
 

  …………. (1)

 By definition  
1 1

n m

i ij
i jE

a m C
 

 and  
1 1

n m

j ij
i j

b m C
 

 

By (1)

 
1 1

n m

i j ij
i j

a b C    
 

   

 By definition

   
1 1

n m

i j ij
i jE

a b m C   
 

    

   

   

1 1 1 1

1 1 1 1

n m n m

i ij j ij
i j i j

n m n m

i ij i ij
i j i j

E E

a m C b m C

a m C b m C

 

 

  

   

   

 

               

  

 

 

 

 

2) Monotonicity

If  on E then
E E

  

Proof :
Suppose  on E

tst
E E

  

Let 0f  

By linearity property

  0
E E E E

f        

E E

  

3) Additivity :
For any two disjoint subset ,A B E with finite measure,

A B A B

    


Solution :

A B

A B E
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 A B

E

A B

E E

A B

  

 

 

 

 

 



 

 

4) Triangle inequality : If  is a simple  and
E E

   .

Solution : Let  be a simple function and
1

n

i Ai
i

a 


 be canonical

representation of  .

Then
1

n

i Ai
i

a 


 which is a simple function.

By Definition

 

 

1

1

n

i
iE

n

i
iE

a m Ai

a m Ai











 





 
1

n

i
i

a m Ai


 (by triangle inequality)

 

 

1

1

n

i
i

n

i
i

i

E

a m Ai

a m Ai

a

















5) If   a.e. on E, then
E E

  

Solution : Suppose   a.e. on F

Let     0 ;E x E a x  

Then  0 0m E  and on 0 ;E E  

Let
1

n

i Ai
i

a 


 and
1

n

j Bj
j

b 


  be canonical representation of 

and  representation.

By definition
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1

n

i
iE

a m Ai




   

    

  

0 0
1

0 0
1 1

0
1

|
n

i i i
i

n n

i i i i
i i

n

i i
i

a m A E A E E

a m A E a m A E E

O a m A E E



 





 

 



 



  

 



0|E E E

  

Similarly

0E E E

  

  on 0E E

E E

   

* Lebesgue integral of a bounded measurable function on a set of
finite measure.

We now extend the notion of integral of simple function to a
bounded measurable function on a set of finite measure.

Let ‘f’ be a bounded real -valued function defined on a set of
finite measure E. We define the lower and upper Lebesgue integral

respectively, of ‘f’ over E to be sup :
E

simple and f on E  
    
   
     

and inf :
E

simple and f on E
      
   
      .

Since ‘f’ is bounded by the monotonicity property of the
integral for simple functions, the lower and upper integral are finite
and the lower integral  the upper integral.

6.3 DEFINITION

A bounded function ‘f’ on a domain E of finite measure is
said to be Lebesgue integrable over E if its upper and lower
Lebesgue integrals over E are equal. The common value of the upper
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and lower integrals is called the Lebesgue integrals or simply the

integral, of ‘f’ over E and is denoted by
E

f .

Example 2 : Show that a non negative bounded measurable function
on a set E of finite measure is integrable E of finite measure is
integrable over E.

Solution : Let ‘f’ be a bounded measurable function defined on E.
where  m E  .

By simple Approximation Lemma
For ,n  simple function n and n such that n f   n and

1
0 n n

n
   .

 
1 1

n n n n

E E E E

m E
n n

           

But,  sup ; , n

E

simple f       and

 inf ; , nsimple f      

0 inf ; ,
E

simple f
        
   
    sup ; ,

E

simple f  
    
   
  

 
1

n n

E E

m E
n

    

This is true for any n and  m E 

inf ; ,
E

simple f
       
   
   

sup ; ,
E

simple f  
     
   
  

f is Lebesgue integrable over E.

Example :
Let ‘f’ be a bounded measurable function on a set E of finite

measure. Show that if 0
E

f  then 0f  a.e.

Solution : Suppose 0
E

f  and 0f 

tst 0f  a.e.
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Let  
1

;nE x E f x
n

      
   

then    
1

nE x f x
n
  .

By monotonicity,

 

 

 

1
0

1
0

0

nE

E

n

n

x f
n

m E
n

m E

  

 

 

 

But   0
1

; 0 n
n

E x E f x E




   

 0m E

0f  a.e. over E.

6.3.1 Properties of integral of bounded function :
Theorem : Let ‘f’ and ‘g’ be bounded measurable functions defined
on a set of finite measure E then

1) Linearity : for any ' ' and 

 
E E E

f g f g       

Proof : Let ,f g be bounded functions, ,  

tst
E E E

f g f g       

It is enough tst
E E

f f   and
E E E

f g f g    

If 0 then 0f 

0
E E

f f    

Suppose 0

f is bounded f is bounded f is lebesgue integrable.

Let 0

E

f  upper lebesgue integrable of ' 'f
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inf : &

inf : &

inf : ,

inf : ,

E

E

E

is simple f

simple f

simple f

simple f




 


  

   

    

       
   
       
   

     
   









   

  

 



E

f 

Let 0

Similarly for lower Lebesgue integral of f

E E

f f   

We now show that
E E E

f g f g    

Let 1 and 2 be simple functions on E such that, 1f  and

2g  then 1 + 2 is a simple function and 1 2f g  

f and g are bounded f g  is bounded.

f g  is Lebesgue integrable

By definition

 

1 2 1 2

inf ; ,
E

E E E

f g f g is simple     

      

 

  

 



This is true for any 1 , 2 simple with f  , and 2g 

f g  is lower bound of

   

1 2 1 1 2 1 2

1 2 1 2 1 2

1 1 1 2 2 2

; , , ,

inf ; , , ,

inf ; , inf ; ,

E E

E E E

E E

E E E

f g simple

f g f g simple

f simple g simple

f g

f g f g
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For the reverse inequality
Let 1 and 2 be simple function for which 1 2&f g   on E then

1 2 f g    and 1 2  is simple

1 2

1 2

sup ; ,
E E

E

E E

f g f g simple  

 

 

        
   

 

 

 



 







This is true for any 1 , 2 simple with 1 2&f g  

E

f g  is upper bound of

 

1 2 1 2 1 2

1 2 1 2 1 2

1 1 1 2 2 2

; , , ,

sup ; , , ,

sup ; , sup ; ,

E E

E E E

E

E E

E E E

E E E

f g simple

f g f g simple

f simple g simple

f g

f g f g

f g f g

     

     

     

      
   

         
   

       
   

 

   

   

 

  

 

 

  

  







2) Monotonicity : If f g on E, then
E E

f g 

Proof
Suppose f and g are bounded mesurable function on a set E of

finite measurable function and f g

tst
E E

f g 

Let 0h f g  

h is non-negative bounded function.
By linearity

E E E E

g f g f h      

h is bounded & 0h
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h  where 0  simple function

But sup ; ,
E E

h simple h
      
   

   

 0 * 0

0

E E

E E E

E E

h m E

g f h

g f

   

   

 

 

  

 



3) Additivity : For any two disjoint subsets, ,A B E with finite

measure.

A B A B

f f f   


Proof :
Let ‘f’ be bounded measurable function on a set E of finite

measure and A,B disjoint subsets of E.

tst
A B A B

f f f   


f is bounded measure.

, ,A B A Bf f    are bounded measurable functions.

 A B A B

A B E E

A B

E

A B

E E

A B A B

f f

f f

f f

f f f

  

 

 

   

 

 

 

  



 

  











4) Triangle inequality : Let f be a bounded measurable function on a

set of finite measure E, Then
E E

f f  .

Proof :
Let f be bounded measurable function on a set E of finite

measurable
f is measurable and bounded on E.

Note that
f f f  
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 By monotonicity and linearity

E E E

E E

f f f

f f

  

 

  

 

Example :
Let  nf be a sequence of bounded measurable functions on a set of

finite measure E. Show that if nf f uniformly on E, then

lim n
n

E E

f f


 

Solution : Let  nf be a sequence of bounded measurable function

on a set E of finite and nf f uniformly on E

tst lim n
n

E E

f f


 

i.e. n

E E

f f 

nf f uniformly on E

 for a given 0 , 0n 

   
  0, nx E f x f x n n

m E
     

i.e.
  0nf f n n

m E


    on E

For 0n n

Now n n

E

f f f f    

 

 
 

n

E

f f

m E

m E
m E

 





  





By definition

lim n
n

E

f f


   .
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Example 5 :
Show by an example that the pointwise convergence alone is

not sufficient to the passage of the limit under the integral sign.

Solution : Example
Let 0f  , function on  0,1E 

Let
1

0, 0k K
k

 
 
  
  

 as k 

k f  pointwise

1
. 0,

1
. 1

k

E

K m
k

K
k


         

 





0
E

f 

k

E

 
E

f

Example 6 :
Let f be a bounded measurable function on a set of finite

measure E. Assume g is bounded and f g a.e. on E,

Show that
E E

f g 

6.4 THE GENERAL LEBESGUE INTEGRAL

For an extended real-valued function ‘f’ on E, the positive
part f  and the negative part f  of f defined by

    ,0f x ma f x   and

    ,0f x ma f x x E     

Then f  and f  are non-negative functions on f

f f f   on E and f f f   on E

Thus f is measurable iff f  and f  are measurable.

Example 7 :
Let f be a measurable function on E, show that f  and f 

are integrable over E iff f is integrable over E.

Ans. Suppose f  and f  are integrable
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E

f   &
E

f  

But f f f  

E E E E

f f f f f         

f is integrable

Conversely, suppose f is integrable

E

f 

But f f  & f f 

E E

f f f     is integrable

Similarly f  is integrable.

Definition :
A measurable function f on E is said to be integrable over E if

f is integrable over E i.e.
E

f  . If ‘f’ is integrable over E,

then we define the integral of ‘f’ over E by
E E E

f f f    

Example :
Let ‘f’ be integrable over E. Show that f is finite a.e. on E and

0E E E

f f  where 0E E and  0 0m E 

Solution :
‘f’ is integrable on E

f is integrable

E

f 

Note that f is non negative integrable function.

We now show that f is finite a.e. on E.

Note that   ;x E f x 

  ;x E f x x  



116

     ; ;x E f x x E f x n n      

But by chebychev’s Lemma ………………………. (*)

    1
; nm x E f x n f

n
    

f is integrable,
E

f is finite

i.e. f 
   
   

; 0

; 0

m x E f n n

m x E f n

   

   

 f x is finite a.e. on E

f f  , we get

f is finite a.e. on E

Let 0E E s.t.  0 0m E 

By definition

E E E

f f f    

0 0| |E E E E

f f    ( &f f  are non-negative integrable

functions)

 
0 0E E E E

f f f    

Example 9:

Define   2 3

1
0 1f x x

x
  

0 0x 

Show that f is Lebesgue integrable on  0,1 and
1

2 3

0

1
3dx

x
 . Find

also  , 2f x

Solution :

2 3

1

x
 as 0x 

So f is unbounded in  0,1 its Lebesgue integrability define

  2 3

1
,f x n

x
 if

3 2

1
1x

x
 

= n if 3 21O x n 

0 if 0x 



117

Now      
3 2

3 2

1|1 1

0 0 1|

, , ,
n

n

f x n dx f x n dx f x n dx     

3 2

3 2

1| 1

2|3

0 1|

1
3

3
2

1

1 1 2
3 1 3

n

n

ndx dx
x

n
n nn

 

             
  

  

by definition of the Lebesgue integral of on bounded functions

   
1 1

0 0

lim ,

2
lim 3

3

n

n

f x dx f x n dx

n







     



  





Lebesgue integrable define for 2n 

  2 3

1
, 2f x

x
 if

2 3

1
1x

z
 

2 if
2 3

1
0 x

z
 

0 if 0x 

6.5 SUMMARY

In this chapter we have learned about
 Introduction concept of Lebesgue integral.
 Lebesgue integral of complex valued Measurable functions
 Lebesgue integral at a simple function.
 Lebesgue integral on bounded Measurable function general

Lebesgue integral

6.6 UNIT END EXERCISE

1. Show that for a finite family  
1k n

f


of measurable functions

with common domain E, the functions  1.... nMax f f and

 1.... nMin f f also are measurable.

2. Show that the sum and product of two simple functions are
simple.
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3. For every non-negative and measurable function f on  0,1 then

show that
   0,1 0,1

inff dm dm   .

4. Prove that a measurable function    1 0,1f x L if and only if

    
1

2 0,1 ; 2n n

n

m x f x




  

5. If  1 0,1f L find
 

21

2

0

lim log 1
k

f x
K dx

K

       
 

6. Let f be a Lebesgue integrable function on X use the positive and

negative part of f to prove that
x x

f dx f dx   .

7. Let f be a non-negative measurable function on X and suppose

that f M for some constant M prove that
E x

f dx f dx   for

8. Calculate Lebesgue integral for the function

 
1

2

where x is rational
f x

where x is irrational




   

   

9. Evaluate  
5

0

f x dx  if

     

   

0 0 1

1 1 2 3 4

2 2 3 4 5

x

f x x x

x x

      
    











by using Riemann and Lebesgue definition of the integral.
10. Show that if f is a non-negative measurable function then

0f  a.e. on a set A iff 0
A

f dx  

11. If   1f x x if 0 1x 

9

then f is not Lebesgue integrable in  0,1

12. Let F be a non-negative measurable function on  and suppose

that f M for some constant M. Prove that  
E

f d m E    for any

measurable E  .
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7
CONVERGENCE THEOREMS

Unit Structure :

7.1 Introduction

7.2 Measurable Functions

7.3 Lebesgue Theorem on Bounded Convergence

7.4 Limits of Measurable Functions

6.5 Fatou’s Lemma

7.6 Lebesgue integral of non-negative measurable function

7.7 The Monotone convergence Theorem

7.8 Dominated Convergence Theorem

7.9 Lebesgue integral of complex valued functions

7.10 Review

7.11 Unit End Exercise

7.1 INTRODUCTION

In this section we analyze the dynamics of integrability in the
case when sequences of measurable functions are considered.
Roughly speaking a “convergence theorem” states that integrability
is preserved under taking limits. In other words, if one has a

sequence  
1n n

f



of integrable functions, and if ‘f’ is some kind of a

limit of the 'nf s then we would like to conclude that ‘f’ itself is

integrable, as well as the equality lim n
n

f f


  such results are

employed in two instances.

i) When we want to prove that some function ‘f’ is integrable. In

this case we would look for a sequence  
1n n

f



, of integrable

approximation for f.

ii) When we want to construct and integrable function in this case,
we will produce first the approximates and then we will examine
the existence of the limit.

The first convergence result, which is some how primote, but
very useful in the following.
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7.2 MEASURABLE FUNCTIONS

Theorem :

Let  , ,X A  be a finite measure space, let   ,G C o  and

let  : 0,9 , 1nf X n  be a sequence of measurable functions

satisfying.

1) 1 2 .... 0f f  

2)  lim ,nn
f x x X


   Then one has the equality lim 0n

n
A

f dx


  .

Proof :
Let for each 0 and each integer 1n , the set

  ;C
K e nA x X f x   obviously, we have , 0, 1nA A n     we

are going to use the following case.

Claim I :

For every 0 , one has the equality  lim 0n
n

A 


 .

Fix 0 , Let us first observe that (a) we have the inclusion

1 2
C CA A ………………………………….. (II)

Second using (b) we clearly have the equality
1

k
k

A 






 .

Since  is finite using continuity property we have

   
1

lim 0n
n

nn
A A   








     


Claim II :
For every 0 , and every integer 1,n one has the

inequality    0 n n

X

f du a A x    .

Fix  and n and let us consider the elementary functions.

nAn An
h ax x 


  where E

nB X A  obviously, since

 x  the function nh is elementary integrable. By construction

we clearly have 0 n nf h  , so using the properties of integration,

we get
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0 n n n

X X

f dx h dx a A B

a A X

 

 

  



   

 

 



Using claim I & III it follows immediately that

 0 lim inf lim supn n
n n

X X

f d f d X  
 

   

Since the last inequality hold for arbitary 0 , we get

lim 0n
n

X

f du




7.3 LEBESGUE THEOREM ON BOUNDED
CONVERGENCE

Statement :
Let  nf be a sequence of functions measurable on a

measurable subset  ,A a b such that    lim n
n

f x f x


 then if there

exists a constant M such that  nf x M for all ‘n’ and for all ‘x’, we

have    lim n
n

A A

f x dx f x dx 


  .

Proof :

   lim n
n

f x f x


  and  nf x M

 f x M 

The function ‘f’ is bounded and measurable
Hence Lebesgue integrable.
Now we shall show that

   lim 0n
n

A

f x f x dx


  

For a given 0 , we define a partition A into disjoint measurable
sets 'kA s as follows :

 1: , , 1,2,3,.....k k n nA x f f f f k K       

In particular,

 

 
1

2 1

: ; 1,2,3,.....

: ; ; 2,3, 4,.....

n

n

A x f f n

A x f f f f n n

   

     

Clearly,
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1 1 1
k k k

K K K n

n n

A n n n n

A A A A

P Q

m m P Q mP mQ

  

   

              



  







  



Now
n n

n n n

A P Q

f f dx f f dx f f dx         …………. (1)

For each ‘n’, we have

nf f  on nP and 2n nf f f f m    on nQ

Thus, 2n n n

A

f f dx mP M mQ    

As n  , lim n
n

mP mA


 and lim 0n
n

mQ




Thus, n

A

f f dx mA  

 being an arbitrary value

   lim n
n

A A

f x dx f x dx


   

Example 1 :
Verify Bounded Convergence.

Theorem for the sequence of functions

 
1

; 1,
1

n n
f O x n

x
n

   


 .

 
 

1
1

1
n n

f x n
x

n

  


and x

Each nf being bounded and measurable, the limit function.

 
 

2

1 1
lim lim

1
n xn n

f x
ex

n
 

  


It is also bounded and measurable. Now

 

 
 

 

   

1
1

1

0

0

1

11

11
1

1 11

n

n

n

x
dx nn

nx
n

n n
n

n
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1

0

lim
1

11
lim 1

1 11

nn

nn

dx

x
n

n n
n

n








            



 

 1

lim 1
1 1

nn

n
n n

n n

n



                      

11

1

e

e

e

 




Similarly,
1 1 1

0 0 0

1

0

1 1
lim

1

1 1
1

x

n xn

x

dx dx e dx
ex

n

e
e

e e

 





 
     

            

  

Hence Bounded convergence theorem is verified.

7.4 LIMITS OF MEASURABLE FUNCTIONS

If   : , ;1,2,....nf n   is an finite sequence of

functions then we say that  : ,f    is the pointwise limit of

the sequence  n n
f if we have    lim n

n
f x f x


 for each x  .

For any sequence  : ,nf    we can define lim sup n
n

f


as the function with value at ‘x’ given by

   lim sup lim supn k
nn k n

f x f x
 

    

Something that always makes sense because  sup k
k n

f x


decreases n

increases or atleast does not get any bigger as n increase. Suppose
that  nf is a sequence of real number. Let A be the set of numbers

such that nf f for some subsequence
knf of nf .
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f is called a limit point of nf , so A is the set of all limit points of

 nf . Then supremum and infimum of A are denoted by the

following lim inf inf , lim sup supn n
n n

f A f A
 

  .

7.5 FATOU’S LEMMA

Statement :
If  nf is a sequence of non-negative measurable functions,

then for any measurable set E.

 lim inf lim infn n
n n

E E

f dx f dx
 

  

Proof : We write    lim inf
n

f x f x




We recall that for any x,  liminf inf infn nf x f where Ex is the set

of all limit points of  nf x .

nf f  pointwise convergence on E

nf f  pointwise on  1, 0E m E
E



nf  f pointwise on 1E

1E E and  1 0m E 

We may assume nf f pointwise on E

'nf s are non-negative measurable and nf f

f is non-negative and measurable.

Now to show that lim inf n
n

E E

f f


 

Let h be a bounded measurable function of finite support such that
0 h f 

 0m E  where   0 ; 0E x E h x  

h is bounded choose M such that  h x M on E for n Define

minnh   , nh f .

Clearly 0nh  is measurable bounded function and nh M . We can

now show that nh a pointwise on 0E .

For    0x E h x f x 

Case I :

   h x f x
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    0f x h x  

nf f pointwise on E for    0 f x h x 

0n  such that     0n nf x f x n   

     

     

     
0

0min ,

n

n n

n n

f x f x f x

h x f x f x n

h x h f h x n n





   

    

    

nh h  pointwise on 0E

Case II :

   h x f x

Then    n nh x f x on  f x n

nf f pointwise on 0E

nh f h   pointwise 0E

By bounded convergence Theorem
For the bounded sequence  nh restricted to 0E

We have
0 0

lim n
n

E E

h h


 

 
0 0

0 0

lim lim

0, ; 0

lim lim inf lim inf

n n
n n

E E E E

n

n n n
n

E E E E

h h h h

h on E E h on E E

h h h f

 



   

 

  

   

   

    

 

This is true for any bounded measurable function with finite support
such that 0 h f 

 By definition of
E

f

lim inf n
h

E E

f f


  

7.6 LEBESGUE INTEGRAL OF NON-NEGATIVE
MEASURABLE FUNCTION

Definition :
Let f be a measurable function defined on E. The support of

‘f’ is defined as     sup ; 0f x E f x   .

Definition :
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A measurable function f on E is said to vanish outside a set of
finite measure if  a subset 0E of E for which  0m E  & 0f 

on 0E E . It is convenient to say that a function that vanishes outside

a set of finite measure has finite support.
We have defined the integral of a bounded measurable function ‘f’
over a set of finite measure E. But  m E  and f is bounded and

measurable on E with finite. Support we can define its integral over

E by
0E E

f f  where  0m E and 0f  on 0E E .

Definition :
For a non-negative measurable function f on E we define

integral of ‘f’ over E by sup :
E E

h h
 


  bounded; measurable of

finite support and 0 h f on E   .

Chebychev’s Inequality :
Statement :

Let f be a non-negative measurable function on E  then
for any 0 .

  
1

;
E

m x E f x f


   

Proof :
Let   :E x E f x   

Case I :

 nm   for each n define  ,nE E n n   . Then

nn E

  .

Then n is bounded measurable function

 n
m n

E

E   and n f 

Note that 1n nE E 
 and

1

n

n

E E 







By continuity of measure.

   lim

lim

n
m m

n

n
n

E

E E  




 

 

n is bounded on E and n f 
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by definition
E

f , we get

 

n

E E

m

E

f

E f

 

 

 



Both side 

 
1

E

m E f


  

Case II :  m E 

Define Eh


   then h is bounded measurable function h f

 by definition of
E

f , we get  
E

m E h f   

 

  

1

1
;

E

E

m E f

m x E f x f









   





7.7 THE MONOTONE CONVERGENCE THEOREM

Statement : Let  nf be an increasing sequence on non-negative

measurable functions on A. If    lim n
n

f x f x


 then lim n
n

A A

f f


  .

Proof :
Let  nf be an increasing sequence of non-negative

measurable functions and  lim n
n

f f x


 i.e. it is convergent at

pointwise to f on A.

Now to show that lim n
n

A A

f f


  .

nf f pointwise on A and 1n nf f n   

n nf f   on A

n

A A

f f   on A

sup n

A A

f f  

lim sup n
n

A A

f f


  ……………………………. (I)

By the Fatou’s lemma
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lim inf n
n

A A

f f


  ……………………………. (II)

From I & II we get

lim inf lim sup

lim

n n
n n

A A A

n
n

A A

f f f

f f

 



 

 

  

 

7.8 DOMINATED CONVERGENCE THEOREM

(Generalisation of Bounded Convergence Theorem)
Statement : Let  nf be a sequence of measurable function on E.

Suppose there is a function ‘g’ that is integrable over E and
dominates  nf on E in the sense that nf g on E for all n. If

nf f pointwise almost everywhere on E,then f is integrable over

E and lim n
n

E E

f f


  .

Proof :

n nf g  on E and nf f pointwise on E.

f g g

f g

  

   
f is measurable

nf g and 0nf g g f    and ng f g f   pointwise

By Fatou’s lemma

liminf

liminf

limsup

n

n

E E

n

E E

g f g f

f

f





  

 

 

 

 

 





limsup n

E E

f f   ……………………………… (I)

Similarly 0ng f  & ng f g f   pointwise on E.

 By Fatou’s lemma,

liminf n

E E

g f g f   

liminf n

E E E

g f g f     
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liminf n

E E

f f  ……………………………. (III)

From I & II we get

liminf limsup

lim

n n

E E E

n
n

E E

f f f

f f


 

 

  

 

Example 2 :
Check the convergence of

  1 ;

0 ;

nf x x n
n

x n

 

   

Solution : Let   1 ;nf x x n
n

 

0 x n 

Then   0nf x  uniformly on  but 2;nf dx




 1, 2,3,.....n 

 
1

lim lim 0n
n n

f x
n 

  where x n

0 when x n

 lim 0n
n

f x


  uniformly on the whole real time.

Now,    2

1 1 1

2 2
m mf x f x

m m m
    

Whenever
1

2
M 



Now   10 0 2
n n

n

n n

f x dx dx dx dx
n

  

  

          .

This emplies that uniform converges of   nf x is not enough for

lim limn n
n n

f f
 

 
This equality is Lebesgue integration.
In general, is only due to dominated convergence of the sequence

  nf x .

However on the set of finite measure uniformly convergent
sequence of bounded function are bounded convergent.
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7.9 LEBESGUE INTEGRAL OF COMPLEX VALUED
FUNCTIONS

If f is a complex valued function on nE  we may write as

     f x u x i x  where &u v  are real functions called the real and

imaginary part of f.

A complex valued measurable function, :f u iv on E is said

to be integrable if      2 2

E E

f x u x v x    and the integral

of ‘f’ is given by
E E E

f u i v   

Theorem :
Show that a complex valued function is integrable if and only

if both of its real and imaginary parts are integrable.
Proof :

Suppose :f u iv is integrable

2 2

2 2 2

2 2

f

u v

u u u u v

u u v

 

  

   

   





 
u is integrable

Similarly v is integrable
Conversely
Suppose &u v  are integrable

u  and V 

By Minkowski’s inequality
2 2 2 2f u v u v u v

f u v

     

     
f is integrable.

Definition :
A measurable function : , nf E C E  is said to be an 1L

function if
E

f  .
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Note :  1 nL  {set of all complex valued function on n }

Definition : A family G of integrable function is dense in  1 nL  if

for any f  and 0 g G    so that
E

f g 

Example 3:
Show that the continuous function of compact support is

dense in  1 nL  .

Solution :
To show that : The continuous function of compact support is

dense in  1 nL  .

i.e. tst for any 1f L and 0 .

 a continuous function ‘g’ on n with compact support such that

,f g  i.e. f g  .

Let  1 nf L 

We may assume ‘f’ is real valued becaue we may approximate its
real and imaginary part independently.

In this can we write f f f   .

Where 0f   and 0f  

 It is enough to show the result 0f  .

0f  can be approximated by integrable simple functions.

It is enough to show that the result for an integrable simple
functions.

nA integrable simple functions is a Linear combination of

characteristic function.

It is enough to show for Ef  where E is a measurable set of finite

measurable.
Let 0

E is measurable  a compact set k and an open set  of n such
that K E  and  |m k 

By Urysohn’s Lemma
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 a continuous function :g k such that 0g  on | k & 1g 

on K

g is continuous function with compact support
1Eg f g      |E k and 0Eg   on outside |E k

   1 | |
n E k

g f m E k m k       


 continuous function of compact support such that g f  .

 Continuous function of compact support is dense in  1 nL  .

Example 4 :

Let  1 nf L  show that f f 

Solution : Let 1f L to show that f f 
Let z f 
If 0z  then clearly 0f z z f    

f f  
If 0z 

Define
z

z


1  and z z 

f z z f f        

Let f u iv  

By definition

0

f u i v

f u i v

f v

  

  

   

  

  

 

f u   ……………………………………….. (I)

u u f f f    

By Monotonicity property

u f  ………………………………………….. (II)
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By (I) and (II)

f f   proved

Example 5 :

Show that  1 nL  is complete in its metric.

Solution :

Let  nf be a Cauchy sequence in  1 nL  for 00, n  

such that 01
,m nf f n n n  

 for each k 

We can choose kn such that for , km n n
1

1

2
m n k

f f  and 1k kn n 

then the sequence
knf has the property that

1

1

2k kn n k
f f


  .

Construct the series

           

      

1 2 1 3 2

1 1

1

....

k k

n n n n n

n n n
K

f n f x f x f x f x f x

f x f x f x






     

  

and        
1 1

1
k kn n n

K

g x f x f x f x






  

Let  kS g denote the thk partial sum of the series g then.

       
1 1

1

1
i i

k

k n n n
i

S g f x f x f x






  

Then   kS g is a sequence of non-negative function converges

pointwise to g.

   1k kS g S g n  

 By Monotone Convergence Theorem g is integrable and

 lim k
n

S g g


 

Note that f g

 f g    ( g is integrable)
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f is integrable

f is  1 nL 

Let  kS f denote the thk partial sum of the series of f, then

        

 

1 1

1

1
i i

k

K

k n n n
i

n

S f f x f x f x

f x







  







 kS f f pointwise

knf f  pointwise

Now we show that
knf f  in  1 nL 

Note that
knf f g k   

By Dominated convergence Theorem

1

lim 0

lim 0

k

k

n
n

n
n

f f

f f





 

  





knf f  in  1 nL 

nf is Cauchy and has convergent subsequence
knf converges of f.

We get nf f

 Every Cauchy sequence in 1L is convergent.
 1L is complete in its metric. Proved

7.10 REVIEW

In this chapter we have learnt following points.
 Limits of Measurable function
 Bounded convergence theorem of measurable function
 Monotone convergence theorem of measurable function.
 Fatou’s lemma of measurable function
 Dominated convergence Theorem
 Complex valued measurable function

 Compactness of  1 nL 

7.12 UNIT END EXERCISE

1. show by an example that the inequality in Fatou’s lemma may be
a strict inequality.
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Example : Consider a sequence of function  n n
f


defined on  0,1

by    2 2
0,1

1
n

nx
f x x

n x
 


.

i) Show that  nf is uniformly bounded on  0,1 and evaluate

 
2 2

0,1

lim
1n

nx
dx

n x 

ii) Show that  nf doesnot converge uniformly on  0,1

Solution :
1) For all n for all  0,1x  we have 2 21 2 0n x nx   and

2 21 0n x 

Hence   2 2

1
0

1 2
n

nx
f x

n x
  



Thus  f x is uniformly bounded on  0,1

Since each nf is continuous on  0,1

f is Riemann integrable on  0,1

In this case Lebesgue integral and Riemann integral on  0,1 .

Consider

 

1

2 2 2 2
0

0,1
1 1

nx nx
dx dx

n x n x


  

Put 2 21 n x t 
21

0

1
1

2

n

t dt
x



  

 

 
 2

2

2 2

0,1

log 11
log 1

1 2 2

nnx
dx n

n x n n


  



Using 1L Hospitalrule we get

 2log 1
log 0

2n

n

n




Hence
 

2 2

0,1

lim 0
1n

nx
dx

n x




ii) For each  
 

2 2

0,1

0,1 lim 0
1n

nx
x

n x
  



Hence nf f pointwise on  0,1
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Now to show that nf does not converges to 0f  uniformly on

 0,1 .

We find a sequence  nx in  0,1 .

Such that 0nx  and  x nf x   0 0f  as n  , taking

1
nx

n
 then   1

2nf x  .

Thus    
1

lim 0 0
2

n n
n

f x f


  

Example 2 :

Evaluate 2

0

1
lim

nn

x

n

x
e dx

n




     

Solution : We know that

lim 1
n

x

n

x
e

n

     
and

1

1 1
1

n n
x x

n n


              

.

Also we have 1
n

xx
e

n

     

21
n

x xx
e e

n
      

 by Dominated convergence then to the function 1
n

xx
e

n

     
with

the dominating function xe

 

 

2

0

2

0,1

0

2

0,1

0

0

lim 1

lim 1 1

lim1 1

1

nn

x

n

n

x

n

n

x

n

x

x
e dx

n

x
x e dx

n

x
x e dx

n

e dx





















     

     

     













2) Show by an example that monotone convergence theorem does
not hold for a decreasing sequence of functions.

3) Let   2
: ;0n

x
f x x n

n
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= 0 ; otherwise

Evaluate  
0

lim
n

n
n

f x dx
  and  

0

lim
n

n
n

f x dx
  are these equal?

4)   10 0
2

g x x  

= 1 1 1
2

x 

   

   
2

2 1

,0 1

1 ,0 1

k

k

f x g x x

f x g x x

  

   

To show that    
0 0

lim inf lim infn n
n n

f x dx f x dx
 

  

5) If  ; 0,nf X   is measurable for 1, 2,....n  and

    
1

n
n

f x f x x X




  then show that
1

n
nX X

f dr f dr 




  .

6) Use the dominated convergence theorem to find

 
1

lim n
n

f x dx


  where   31
n

x
f x

nx



.

7) If n na b for all n, then show that lim inf lim infn n
n n

a b
 

 .

8) State and prove bounded convergence theorem of measurable
function.

9) Use convergence theorem to show that

 
 

   
0,

cosxf t e t d u x



  is continuous.

10) Use the dominated, convergence theorem to prove that
2 21

0
lim 0n x

n
n xe dx




11) Use the dominated convergence theorem to show that
2

1
2 2

2
2

lim 1

n
x

n
R R

x
dx e dx

n

      



      
 




